Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
003a8df1
Commit
003a8df1
authored
Aug 05, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
修改特征工程文件
parent
8d4380f4
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
113 additions
and
43 deletions
+113
-43
feature_engineering.py
eda/esmm/Model_pipline/feature_engineering.py
+113
-43
No files found.
eda/esmm/Model_pipline/feature_engineering.py
View file @
003a8df1
...
...
@@ -104,15 +104,15 @@ def feature_engineer():
unique_values
=
[]
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct stat_date from esmm_train_data_dwell_
precise
"
sql
=
"select distinct stat_date from esmm_train_data_dwell_
share_test
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ucity_id from esmm_train_data_dwell_
precise
"
sql
=
"select distinct ucity_id from esmm_train_data_dwell_
share_test
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ccity_name from esmm_train_data_dwell_
precise
"
sql
=
"select distinct ccity_name from esmm_train_data_dwell_
share_test
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
...
...
@@ -136,22 +136,49 @@ def feature_engineer():
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data_dwell_precise"
sql
=
"select distinct price_min from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct treatment_method from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct price_max from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct treatment_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct maintain_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct recover_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
# unique_values.append("video")
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data_dwell_share_test"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
6
0
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
18
0
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
sql
=
"select distinct doctor.hospital_id from jerry_test.esmm_train_data_dwell_
precise
e "
\
sql
=
"select distinct doctor.hospital_id from jerry_test.esmm_train_data_dwell_
share_test
e "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
unique_values
.
extend
(
get_unique
(
db
,
sql
))
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
]
unique_values
.
extend
(
features
)
print
(
"unique_values length"
)
...
...
@@ -165,14 +192,23 @@ def feature_engineer():
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"doris.search_tag2,doris.search_tag3,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"e.device_id,e.cid_id "
\
"from jerry_test.esmm_train_data_dwell_precise e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"from jerry_test.esmm_train_data_dwell_share_test e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
...
...
@@ -181,20 +217,27 @@ def feature_engineer():
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
[
value_map
.
get
(
x
[
0
],
1
),
value_map
.
get
(
x
[
6
],
2
),
value_map
.
get
(
x
[
7
],
3
),
value_map
.
get
(
x
[
8
],
4
),
value_map
.
get
(
x
[
9
],
5
),
value_map
.
get
(
x
[
10
],
6
),
value_map
.
get
(
x
[
11
],
7
),
value_map
.
get
(
x
[
12
],
8
),
value_map
.
get
(
x
[
13
],
9
)],
app_list_func
(
x
[
14
],
leve2_map
),
app_list_func
(
x
[
15
],
leve3_map
),
x
[
6
],
x
[
16
],
x
[
17
]
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
.
get
(
x
[
0
],
1
),
value_map
.
get
(
x
[
13
],
2
),
value_map
.
get
(
x
[
14
],
3
),
value_map
.
get
(
x
[
15
],
4
),
value_map
.
get
(
x
[
16
],
5
),
value_map
.
get
(
x
[
17
],
6
),
value_map
.
get
(
x
[
18
],
7
),
value_map
.
get
(
x
[
19
],
8
),
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
29
],
x
[
30
]
))
...
...
@@ -202,11 +245,13 @@ def feature_engineer():
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
map
(
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
]))
x
[
10
],
x
[
11
]
,
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]
))
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"ids"
,
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
...
...
@@ -216,14 +261,16 @@ def feature_engineer():
print
(
"训练集样本总量:"
)
print
(
rdd
.
count
())
get_pre_number
()
#
get_pre_number()
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
]))
x
[
10
],
x
[
11
]
,
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]
))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
...
...
@@ -236,19 +283,30 @@ def feature_engineer():
def
get_predict
(
date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
):
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,doris.search_tag2,doris.search_tag3 "
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_pre_data e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"where e.device_id = '355374101417079'"
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date"
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
]
df
=
spark
.
sql
(
sql
)
...
...
@@ -257,17 +315,25 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
f
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"search_tag2"
,
"search_tag3"
)
\
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
[
value_map
.
get
(
date
,
1
),
value_map
.
get
(
x
[
9
],
2
),
value_map
.
get
(
x
[
10
],
3
),
value_map
.
get
(
x
[
11
],
4
),
value_map
.
get
(
x
[
12
],
5
),
value_map
.
get
(
x
[
13
],
6
),
value_map
.
get
(
x
[
14
],
7
),
value_map
.
get
(
x
[
15
],
8
),
value_map
.
get
(
x
[
16
],
9
)],
app_list_func
(
x
[
17
],
leve2_map
),
app_list_func
(
x
[
18
],
leve3_map
)))
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
app_list_func
(
x
[
13
],
leve2_map
),
app_list_func
(
x
[
14
],
leve2_map
),
app_list_func
(
x
[
15
],
leve2_map
),
[
value_map
.
get
(
date
,
1
),
value_map
.
get
(
x
[
16
],
2
),
value_map
.
get
(
x
[
17
],
3
),
value_map
.
get
(
x
[
18
],
4
),
value_map
.
get
(
x
[
19
],
5
),
value_map
.
get
(
x
[
20
],
6
),
value_map
.
get
(
x
[
21
],
7
),
value_map
.
get
(
x
[
22
],
8
),
value_map
.
get
(
x
[
23
],
9
),
value_map
.
get
(
x
[
24
],
10
),
value_map
.
get
(
x
[
25
],
11
),
value_map
.
get
(
x
[
26
],
12
),
value_map
.
get
(
x
[
27
],
13
),
value_map
.
get
(
x
[
28
],
14
),
value_map
.
get
(
x
[
29
],
15
)],
app_list_func
(
x
[
30
],
leve2_map
),
app_list_func
(
x
[
31
],
leve3_map
)))
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
print
(
"预测集样本大小:"
)
...
...
@@ -275,8 +341,10 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
if
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
count
()
>
0
:
print
(
"预测集native有数据"
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"ids"
,
"search_tag2_list"
,
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
],
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"native/"
,
mode
=
"overwrite"
)
...
...
@@ -289,9 +357,11 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
if
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
count
()
>
0
:
print
(
"预测集nearby有数据"
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
],
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"nearby/"
,
mode
=
"overwrite"
)
print
(
"nearby tfrecord done"
)
else
:
...
...
@@ -316,6 +386,6 @@ if __name__ == '__main__':
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
#
get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
spark
.
stop
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment