diff --git a/diaryTraining.py b/diaryTraining.py index cafd0486bbdab18786b0ab399ac0bdf4d848dd85..786a00bdde5ab5f081c639ca306dbde6d8e5d424 100644 --- a/diaryTraining.py +++ b/diaryTraining.py @@ -9,8 +9,8 @@ def train(): ffm_model = xl.create_ffm() ffm_model.setTrain(DIRECTORY_PATH + "train{0}-{1}.csv".format(DATA_START_DATE, VALIDATION_DATE)) ffm_model.setValidate(DIRECTORY_PATH + "validation{0}.csv".format(VALIDATION_DATE)) - - param = {'task': 'binary', 'lr': lr, 'lambda': l2_lambda, 'metric': 'auc'} + # logä¿å˜è·¯å¾„,如果ä¸åŠ è¿™ä¸ªå‚æ•°ï¼Œæ—¥å¿—默认ä¿å˜åœ¨/temp路径下,ä¸ç¬¦åˆè§„范 + param = {'task': 'binary', 'lr': lr, 'lambda': l2_lambda, 'metric': 'auc',"log":"/data2/models/result"} ffm_model.fit(param, DIRECTORY_PATH + "model_lr{}_lambda{}.out".format(lr, l2_lambda)) diff --git a/predictDiary.py b/predictDiary.py index 3e0eff3d028387d9509595cdb038bb198a823fca..314f92e7638951dfc23965a64368fd71686b1ed4 100644 --- a/predictDiary.py +++ b/predictDiary.py @@ -52,7 +52,9 @@ def predict(user_profile): ffm_model = xl.create_ffm() ffm_model.setTest(instance_file_path) ffm_model.setSigmoid() - ffm_model.predict(DIRECTORY_PATH + "model_lr{}_lambda{}.out".format(lr, l2_lambda), + #日志ä¿å˜è·¯å¾„,如果ä¸åŠ è¿™ä¸ªå‚æ•°ï¼Œæ—¥å¿—默认ä¿å˜åœ¨/temp路径下,ä¸ç¬¦åˆè§„范 + param = {"log": "/data2/models/result"} + ffm_model.predict(param,DIRECTORY_PATH + "model_lr{}_lambda{}.out".format(lr, l2_lambda), DIRECTORY_PATH + "result/{0}_output.txt".format(user_profile['device_id'])) print("预测结æŸ") predict_save_to_local(user_profile, instance) diff --git a/processData.py b/processData.py index d4c5ec4948c3ff6684c1d08006fc320945b10e07..7838c907ad38b4348aa5705797f47fea1dab503e 100644 --- a/processData.py +++ b/processData.py @@ -77,7 +77,7 @@ def ffm_transform(data, test_number, validation_number): print("Start ffm transform") start = time.time() ffm_train = multiFFMFormatPandas() - data = ffm_train.fit_transform(data, y='y',n=50000,processes=6) + data = ffm_train.fit_transform(data, y='y',n=50000,processes=5) with open(DIRECTORY_PATH+"ffm_{0}_{1}.pkl".format(DATA_START_DATE,DATA_END_DATE), "wb") as f: pickle.dump(ffm_train, f)