Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
1b9c29c6
Commit
1b9c29c6
authored
Apr 28, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
a6121a48
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
80 additions
and
93 deletions
+80
-93
multi.py
tensnsorflow/multi.py
+80
-93
No files found.
tensnsorflow/multi.py
View file @
1b9c29c6
...
@@ -4,6 +4,7 @@ from pyspark.conf import SparkConf
...
@@ -4,6 +4,7 @@ from pyspark.conf import SparkConf
import
pytispark.pytispark
as
pti
import
pytispark.pytispark
as
pti
# from pyspark.sql import SQLContext
# from pyspark.sql import SQLContext
from
pyspark.sql
import
SparkSession
from
pyspark.sql
import
SparkSession
from
pyspark.sql.functions
import
_lit_doc
import
datetime
import
datetime
import
pandas
as
pd
import
pandas
as
pd
...
@@ -36,7 +37,7 @@ def feature_engineer():
...
@@ -36,7 +37,7 @@ def feature_engineer():
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
6
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
print
(
start
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
...
@@ -65,7 +66,7 @@ def feature_engineer():
...
@@ -65,7 +66,7 @@ def feature_engineer():
hospital
=
spark
.
sql
(
sql
)
hospital
=
spark
.
sql
(
sql
)
df
=
df
.
join
(
hospital
,
"diary_service_id"
,
"left_outer"
)
.
fillna
(
"na"
)
df
=
df
.
join
(
hospital
,
"diary_service_id"
,
"left_outer"
)
.
fillna
(
"na"
)
df
=
df
.
drop
(
"
level2"
)
.
drop
(
"
diary_service_id"
)
df
=
df
.
drop
(
"diary_service_id"
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
...
@@ -86,19 +87,18 @@ def feature_engineer():
...
@@ -86,19 +87,18 @@ def feature_engineer():
2
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
2
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
train
=
df
.
select
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"stat_date"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
rdd
=
df
.
select
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"stat_date"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"y"
,
"z"
,)
\
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"y"
,
"z"
,)
.
rdd
.
rdd
.
filter
(
lambda
x
:
x
[
3
]
!=
validate_date
)
.
map
(
lambda
x
:
(
app_list_func
(
x
[
0
],
app_list_map
),
app_list_func
(
x
[
1
],
leve2_map
),
rdd
.
persist
()
train
=
rdd
.
filter
(
lambda
x
:
x
[
3
]
!=
validate_date
)
.
map
(
lambda
x
:
(
app_list_func
(
x
[
0
],
app_list_map
),
app_list_func
(
x
[
1
],
leve2_map
),
app_list_func
(
x
[
2
],
leve3_map
),
value_map
[
x
[
3
]],
value_map
[
x
[
4
]],
app_list_func
(
x
[
2
],
leve3_map
),
value_map
[
x
[
3
]],
value_map
[
x
[
4
]],
value_map
[
x
[
5
]],
value_map
[
x
[
6
]],
value_map
[
x
[
7
]],
value_map
[
x
[
8
]],
value_map
[
x
[
5
]],
value_map
[
x
[
6
]],
value_map
[
x
[
7
]],
value_map
[
x
[
8
]],
value_map
[
x
[
9
]],
value_map
[
x
[
10
]],
value_map
[
x
[
11
]],
value_map
[
x
[
12
]],
value_map
[
x
[
9
]],
value_map
[
x
[
10
]],
value_map
[
x
[
11
]],
value_map
[
x
[
12
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
x
[
18
],
x
[
19
]))
value_map
[
x
[
17
]],
x
[
18
],
x
[
19
]))
test
=
df
.
select
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"stat_date"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
test
=
rdd
.
filter
(
lambda
x
:
x
[
3
]
==
validate_date
)
\
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"y"
,
"z"
,
)
\
.
rdd
.
filter
(
lambda
x
:
x
[
3
]
==
validate_date
)
\
.
map
(
lambda
x
:
(
app_list_func
(
x
[
0
],
app_list_map
),
app_list_func
(
x
[
1
],
leve2_map
),
.
map
(
lambda
x
:
(
app_list_func
(
x
[
0
],
app_list_map
),
app_list_func
(
x
[
1
],
leve2_map
),
app_list_func
(
x
[
2
],
leve3_map
),
value_map
[
x
[
3
]],
value_map
[
x
[
4
]],
app_list_func
(
x
[
2
],
leve3_map
),
value_map
[
x
[
3
]],
value_map
[
x
[
4
]],
value_map
[
x
[
5
]],
value_map
[
x
[
6
]],
value_map
[
x
[
7
]],
value_map
[
x
[
8
]],
value_map
[
x
[
5
]],
value_map
[
x
[
6
]],
value_map
[
x
[
7
]],
value_map
[
x
[
8
]],
...
@@ -106,95 +106,80 @@ def feature_engineer():
...
@@ -106,95 +106,80 @@ def feature_engineer():
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
x
[
18
],
x
[
19
]))
value_map
[
x
[
17
]],
x
[
18
],
x
[
19
]))
print
(
"test.count"
,
test
.
count
())
print
(
"train count"
,
train
.
count
())
spark
.
createDataFrame
(
test
)
.
write
.
csv
(
'/recommend/va'
,
mode
=
'overwrite'
,
header
=
True
)
spark
.
createDataFrame
(
test
)
.
write
.
csv
(
'/recommend/va'
,
mode
=
'overwrite'
,
header
=
True
)
spark
.
createDataFrame
(
train
)
.
write
.
csv
(
'/recommend/tr'
,
mode
=
'overwrite'
,
header
=
True
)
spark
.
createDataFrame
(
train
)
.
write
.
csv
(
'/recommend/tr'
,
mode
=
'overwrite'
,
header
=
True
)
print
(
"done"
)
print
(
"done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
# def get_predict(date,value_map,app_list_map,level2_map,level3_map):
def
get_predict
(
date
,
value_map
,
app_list_map
,
level2_map
,
level3_map
):
#
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
# sql = "select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name," \
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
# "u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time," \
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
# "dl.app_list,e.hospital_id,feat.level3_ids,feat.level2 " \
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
# "from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id "
\
# "left join cid_type_top c on e.device_id = c.device_id " \
"left join cid_type_top c on e.device_id = c.device_id "
\
# "left join cid_time_cut cut on e.cid_id = cut.cid " \
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
# "left join device_app_list dl on e.device_id = dl.device_id " \
"left join device_app_list dl on e.device_id = dl.device_id "
\
# "left join diary_feat feat on e.cid_id = feat.diary_id"
"left join diary_feat feat on e.cid_id = feat.diary_id "
\
#
"left join train_Knowledge_network_data k on feat.level2 = k.level2_id"
#
# df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel2_id", 5: "ccity_name",
features
=
[
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
# 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top",10: "device_id",
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
# 11: "cid_id", 12: "time",13:"app_list",14:"hospital_id",15:"level3_ids",
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
# 16: "level2"})
df
=
spark
.
sql
(
sql
)
#
# db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
# sql = "select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time " \
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
# "from train_Knowledge_network_data"
"device_id"
,
"cid,id"
,
"label"
,
# knowledge = con_sql(db, sql)
"channel"
,
"top"
,
"time"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
# knowledge = knowledge.rename(columns={0: "level2", 1: "method", 2: "min", 3: "max",
# 4: "treatment_time", 5: "maintain_time", 6: "recover_time"})
rdd
=
df
.
select
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"label"
,
"y"
,
"z"
,
# knowledge["level2"] = knowledge["level2"].astype("str")
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
#
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
# df = pd.merge(df, knowledge, on='level2', how='left')
"recover_time"
)
\
# df = df.drop("level2", axis=1)
.
rdd
.
map
(
lambda
x
:
(
app_list_func
(
x
[
0
],
app_list_map
),
app_list_func
(
x
[
1
],
level2_map
),
# df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer",
app_list_func
(
x
[
2
],
level3_map
),
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
# "channel", "top", "time", "app_list", "hospital_id", "level3_ids"])
value_map
[
x
[
3
]],
value_map
[
x
[
9
]],
#
value_map
[
x
[
10
]],
value_map
[
x
[
11
]],
value_map
[
x
[
12
]],
value_map
[
x
[
13
]],
#
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
# df["stat_date"] = date
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
# print(df.head(6))
value_map
[
date
]))
# df["app_list"] = df["app_list"].fillna("lost_na")
# df["app_list"] = df["app_list"].apply(app_list_func,args=(app_list_map,))
rdd
.
persist
()
# df["clevel2_id"] = df["clevel2_id"].fillna("lost_na")
# df["clevel2_id"] = df["clevel2_id"].apply(app_list_func, args=(level2_map,))
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
# df["level3_ids"] = df["level3_ids"].fillna("lost_na")
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
# df["level3_ids"] = df["level3_ids"].apply(app_list_func, args=(level3_map,))
print
(
"native"
)
#
print
(
native_pre
.
count
())
# # print("predict shape")
native_pre
.
write
.
csv
(
'/recommend'
,
mode
=
'overwrite'
,
header
=
True
)
# # print(df.shape)
# df["uid"] = df["device_id"]
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
0
)
# df["city"] = df["ucity_id"]
.
map
(
lambda
x
:
(
x
[
0
],
x
[
1
],
x
[
2
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
# features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
x
[
16
,
x
[
17
],
x
[
18
],
x
[
19
],
x
[
20
],
x
[
21
],
x
[
22
],
x
[
23
]])))
\
# "channel", "top", "time", "stat_date","hospital_id",
.
toDF
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"ucity_id"
,
# "method", "min", "max", "treatment_time", "maintain_time", "recover_time"]
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
# for i in features:
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
# df[i] = df[i].astype("str")
"recover_time"
,
"stat_date"
)
.
write
.
csv
(
'/recommend/native'
,
mode
=
'overwrite'
,
header
=
True
)
# df[i] = df[i].fillna("lost")
# df[i] = df[i] + i
nearby_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
1
)
.
map
(
lambda
x
:
(
x
[
3
],
x
[
4
],
x
[
5
])))
\
#
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
# native_pre = df[df["label"] == 0]
print
(
"nearby"
)
# native_pre = native_pre.drop("label", axis=1)
print
(
nearby_pre
.
count
())
# nearby_pre = df[df["label"] == 1]
nearby_pre
.
write
.
csv
(
'/recommend'
,
mode
=
'overwrite'
,
header
=
True
)
# nearby_pre = nearby_pre.drop("label", axis=1)
#
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
6
]
==
1
)
# for i in ["ucity_id", "ccity_name", "device_type", "manufacturer",
.
map
(
lambda
x
:
(
x
[
0
],
x
[
1
],
x
[
2
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
# "channel", "top", "time", "stat_date","hospital_id",
x
[
16
,
x
[
17
],
x
[
18
],
x
[
19
],
x
[
20
],
x
[
21
],
x
[
22
],
x
[
23
]])))
\
# "method", "min", "max", "treatment_time", "maintain_time", "recover_time"]:
.
toDF
(
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"ucity_id"
,
# native_pre[i] = native_pre[i].map(value_map)
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
# # TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
# native_pre[i] = native_pre[i].fillna(0)
"recover_time"
,
"stat_date"
)
.
write
.
csv
(
'/recommend/nearby'
,
mode
=
'overwrite'
,
header
=
True
)
#
# nearby_pre[i] = nearby_pre[i].map(value_map)
rdd
.
unpersist
()
# # TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
# nearby_pre[i] = nearby_pre[i].fillna(0)
#
# print("native")
# print(native_pre.shape)
#
# native_pre[["uid","city","cid_id"]].to_csv(path+"native.csv",index=False)
# write_csv(native_pre, "native",200000)
#
# print("nearby")
# print(nearby_pre.shape)
#
# nearby_pre[["uid","city","cid_id"]].to_csv(path+"nearby.csv",index=False)
# write_csv(nearby_pre, "nearby", 160000)
def
con_sql
(
db
,
sql
):
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
cursor
=
db
.
cursor
()
...
@@ -244,5 +229,7 @@ if __name__ == '__main__':
...
@@ -244,5 +229,7 @@ if __name__ == '__main__':
ti
=
pti
.
TiContext
(
spark
)
ti
=
pti
.
TiContext
(
spark
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
# feature_engineer()
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
test
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment