Commit 23e296c5 authored by 王志伟's avatar 王志伟

数据指标波动假设检验统计

parent f26a48d9
...@@ -187,18 +187,6 @@ def data_cal(x,y): ...@@ -187,18 +187,6 @@ def data_cal(x,y):
y_a=[y[0], y[1] - y[0]] y_a=[y[0], y[1] - y[0]]
a_df=pd.DataFrame({'原':x_a,'测':y_a}) a_df=pd.DataFrame({'原':x_a,'测':y_a})
return a_df return a_df
chi_ctr_precise_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1=[float(str(Decimal(chi_ctr_precise_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_recently))]
# print(temp1)
chi_ctr_precise_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",yesterday)
temp2=[float(chi_ctr_precise_yesterday[i]) for i in range(len(chi_ctr_precise_yesterday))]
# print(temp2)
tst=data_cal(temp1,temp2)
print(tst)
# print(chi_ctr_precise_recently)
# print(chi_ctr_precise_yesterday)
def chi_cal(data): def chi_cal(data):
data['共计'] = data.apply(lambda x: x.sum(), axis=1) data['共计'] = data.apply(lambda x: x.sum(), axis=1)
...@@ -231,6 +219,23 @@ def chi_cal(data): ...@@ -231,6 +219,23 @@ def chi_cal(data):
else: else:
print("数据波动较小,95%可能性属于正常波动范围") print("数据波动较小,95%可能性属于正常波动范围")
chi_ctr_precise_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1=[float(str(Decimal(chi_ctr_precise_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_recently))]
# print(temp1)
chi_ctr_precise_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",yesterday)
temp2=[float(chi_ctr_precise_yesterday[i]) for i in range(len(chi_ctr_precise_yesterday))]
# print(temp2)
tst=data_cal(temp1,temp2)
print(tst)
chi_cal(tst)
# print(chi_ctr_precise_recently)
# print(chi_ctr_precise_yesterday)
# chi_cvr_new= # chi_cvr_new=
# chi_cvr_old= # chi_cvr_old=
# #
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment