Commit 2a94c657 authored by 张彦钊's avatar 张彦钊

esmm测试项目

parent fa28e054
...@@ -32,7 +32,7 @@ rm ${DATA_PATH}/nearby/nearby_* ...@@ -32,7 +32,7 @@ rm ${DATA_PATH}/nearby/nearby_*
echo "train..." echo "train..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH} --task_type=train ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=9 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH} --task_type=train
echo "infer native..." echo "infer native..."
......
...@@ -29,18 +29,20 @@ def gen_tfrecords(in_file): ...@@ -29,18 +29,20 @@ def gen_tfrecords(in_file):
for i in range(df.shape[0]): for i in range(df.shape[0]):
feats = ["ucity_id", "ccity_name", "device_type", "manufacturer", feats = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date"] "channel", "top", "time", "stat_date","hospital_id"]
id = np.array([]) id = np.array([])
for j in feats: for j in feats:
id = np.append(id,df[j][i]) id = np.append(id,df[j][i])
app_list = np.array(str(df["app_list"][i]).split(",")) app_list = np.array(str(df["app_list"][i]).split(","))
level2_list = np.array(str(df["clevel2_id"][i]).split(",")) level2_list = np.array(str(df["clevel2_id"][i]).split(","))
level3_list = np.array(str(df["level3_ids"][i]).split(","))
features = tf.train.Features(feature={ features = tf.train.Features(feature={
"y": tf.train.Feature(float_list=tf.train.FloatList(value=[df["y"][i]])), "y": tf.train.Feature(float_list=tf.train.FloatList(value=[df["y"][i]])),
"z": tf.train.Feature(float_list=tf.train.FloatList(value=[df["z"][i]])), "z": tf.train.Feature(float_list=tf.train.FloatList(value=[df["z"][i]])),
"ids": tf.train.Feature(int64_list=tf.train.Int64List(value=id.astype(np.int))), "ids": tf.train.Feature(int64_list=tf.train.Int64List(value=id.astype(np.int))),
"app_list":tf.train.Feature(int64_list=tf.train.Int64List(value=app_list.astype(np.int))), "app_list":tf.train.Feature(int64_list=tf.train.Int64List(value=app_list.astype(np.int))),
"level2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level2_list.astype(np.int))) "level2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level2_list.astype(np.int))),
"level3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level3_list.astype(np.int)))
}) })
example = tf.train.Example(features = features) example = tf.train.Example(features = features)
......
...@@ -55,7 +55,8 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False): ...@@ -55,7 +55,8 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"z": tf.FixedLenFeature([], tf.float32), "z": tf.FixedLenFeature([], tf.float32),
"ids": tf.FixedLenFeature([FLAGS.field_size], tf.int64), "ids": tf.FixedLenFeature([FLAGS.field_size], tf.int64),
"app_list": tf.VarLenFeature(tf.int64), "app_list": tf.VarLenFeature(tf.int64),
"level2_list": tf.VarLenFeature(tf.int64) "level2_list": tf.VarLenFeature(tf.int64),
"level3_list": tf.VarLenFeature(tf.int64)
} }
parsed = tf.parse_single_example(record, features) parsed = tf.parse_single_example(record, features)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment