Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
3591a3f2
Commit
3591a3f2
authored
Feb 21, 2019
by
王志伟
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
send_email
parent
883da871
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
106 additions
and
46 deletions
+106
-46
hypothesis_test.py
eda/recommended_indexs/hypothesis_test.py
+47
-22
send_email.py
eda/recommended_indexs/send_email.py
+59
-24
No files found.
eda/recommended_indexs/hypothesis_test.py
View file @
3591a3f2
...
@@ -36,7 +36,6 @@ def get_somedate():
...
@@ -36,7 +36,6 @@ def get_somedate():
someday
=
someday
.
strftime
(
"
%
Y-
%
m-
%
d"
)
someday
=
someday
.
strftime
(
"
%
Y-
%
m-
%
d"
)
return
someday
return
someday
ten_days
=
get_somedate
()
ten_days
=
get_somedate
()
# print(ten_days)
print
(
"===========分割线,T检验最近10日指标与策略前10日指标是否获得显著提升============"
)
print
(
"===========分割线,T检验最近10日指标与策略前10日指标是否获得显著提升============"
)
#获取最近10天的数据
#获取最近10天的数据
def
DATA_recently
(
x
,
y
,
z
,
q
,
t
):
def
DATA_recently
(
x
,
y
,
z
,
q
,
t
):
...
@@ -138,7 +137,6 @@ def t_test(x,y): #进行t检验
...
@@ -138,7 +137,6 @@ def t_test(x,y): #进行t检验
else
:
#认为数据方差不具有齐性,equal_var=false
else
:
#认为数据方差不具有齐性,equal_var=false
t_test
=
ttest_ind
(
x
,
y
,
equal_var
=
False
)
t_test
=
ttest_ind
(
x
,
y
,
equal_var
=
False
)
t_p_value
=
t_test
[
1
]
t_p_value
=
t_test
[
1
]
# print(t_p_value)
if
t_p_value
>
0.05
:
if
t_p_value
>
0.05
:
print
(
"95
%
置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著提升,p_value:{}"
.
format
(
t_p_value
))
print
(
"95
%
置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著提升,p_value:{}"
.
format
(
t_p_value
))
print
(
"
\n
"
)
print
(
"
\n
"
)
...
@@ -224,7 +222,6 @@ def data_cal(x,y):
...
@@ -224,7 +222,6 @@ def data_cal(x,y):
def
chi_cal
(
data
):
def
chi_cal
(
data
):
data
[
'共计'
]
=
data
.
apply
(
lambda
x
:
x
.
sum
(),
axis
=
1
)
data
[
'共计'
]
=
data
.
apply
(
lambda
x
:
x
.
sum
(),
axis
=
1
)
# print(data)
data
.
loc
[
'共计'
]
=
data
.
apply
(
lambda
x
:
x
.
sum
())
data
.
loc
[
'共计'
]
=
data
.
apply
(
lambda
x
:
x
.
sum
())
t1
=
data
.
iloc
[
0
]
t1
=
data
.
iloc
[
0
]
t2
=
data
.
iloc
[
1
]
t2
=
data
.
iloc
[
1
]
...
@@ -249,20 +246,20 @@ def chi_cal(data):
...
@@ -249,20 +246,20 @@ def chi_cal(data):
v
=
(
len
(
data
)
-
1
)
*
(
data
.
columns
.
size
-
1
)
v
=
(
len
(
data
)
-
1
)
*
(
data
.
columns
.
size
-
1
)
#查表发现阈值为3.84
#查表发现阈值为3.84
if
X
>
3.84
:
if
X
>
3.84
:
print
(
"数据波动较大,超出正常波动范围,95
%
可能性属于指标
显著变化,请关注
"
)
print
(
"数据波动较大,超出正常波动范围,95
%
可能性属于指标
【显著变化,请关注】
"
)
print
(
"
\n
"
)
print
(
"
\n
"
)
else
:
else
:
print
(
"数据波动较小,95
%
可能性属于
正常波动
范围"
)
print
(
"数据波动较小,95
%
可能性属于
【正常波动】
范围"
)
print
(
"
\n
"
)
print
(
"
\n
"
)
#老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
#老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print
(
"【1】(精准曝光)首页精选日记本列表老用户CTR数据波动假设检验结果:"
)
print
(
"【1】(精准曝光)首页精选日记本列表老用户CTR数据波动假设检验结果:"
)
chi_ctr_precise_old_recently
=
chi_DATA_recently
(
"clk_count_oldUser_all_a"
,
"clk_count_oldUser_all_b"
,
"imp_count_oldUser_all_precise"
,
"on_click_diary_card"
,
five_days
,
yesterday
)
chi_ctr_precise_old_recently
=
chi_DATA_recently
(
"clk_count_oldUser_all_a"
,
"clk_count_oldUser_all_b"
,
"imp_count_oldUser_all_precise"
,
"on_click_diary_card"
,
five_days
,
yesterday
)
temp1_old
=
[
float
(
str
(
Decimal
(
chi_ctr_precise_old_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctr_precise_old_recently
))]
temp1_old
=
[
float
(
str
(
Decimal
(
chi_ctr_precise_old_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctr_precise_old_recently
))]
# print(temp1)
chi_ctr_precise_old_yesterday
=
chi_DATA_yesterday
(
"clk_count_oldUser_all_a"
,
"clk_count_oldUser_all_b"
,
"imp_count_oldUser_all_precise"
,
"on_click_diary_card"
,
yesterday
)
chi_ctr_precise_old_yesterday
=
chi_DATA_yesterday
(
"clk_count_oldUser_all_a"
,
"clk_count_oldUser_all_b"
,
"imp_count_oldUser_all_precise"
,
"on_click_diary_card"
,
yesterday
)
temp2_old
=
[
float
(
chi_ctr_precise_old_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctr_precise_old_yesterday
))]
temp2_old
=
[
float
(
chi_ctr_precise_old_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctr_precise_old_yesterday
))]
# print(temp2)
ctr_tst_old
=
data_cal
(
temp1_old
,
temp2_old
)
ctr_tst_old
=
data_cal
(
temp1_old
,
temp2_old
)
chi_cal
(
ctr_tst_old
)
chi_cal
(
ctr_tst_old
)
...
@@ -270,10 +267,10 @@ chi_cal(ctr_tst_old)
...
@@ -270,10 +267,10 @@ chi_cal(ctr_tst_old)
print
(
"【2】(精准曝光)首页精选日记本列表新用户CTR数据波动假设检验结果:"
)
print
(
"【2】(精准曝光)首页精选日记本列表新用户CTR数据波动假设检验结果:"
)
chi_ctr_precise_new_recently
=
chi_DATA_recently
(
"clk_count_newUser_all_a"
,
"clk_count_newUser_all_b"
,
"imp_count_newUser_all_precise"
,
"on_click_diary_card"
,
five_days
,
yesterday
)
chi_ctr_precise_new_recently
=
chi_DATA_recently
(
"clk_count_newUser_all_a"
,
"clk_count_newUser_all_b"
,
"imp_count_newUser_all_precise"
,
"on_click_diary_card"
,
five_days
,
yesterday
)
temp1_new
=
[
float
(
str
(
Decimal
(
chi_ctr_precise_new_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctr_precise_new_recently
))]
temp1_new
=
[
float
(
str
(
Decimal
(
chi_ctr_precise_new_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctr_precise_new_recently
))]
# print(temp1)
chi_ctr_precise_new_yesterday
=
chi_DATA_yesterday
(
"clk_count_newUser_all_a"
,
"clk_count_newUser_all_b"
,
"imp_count_newUser_all_precise"
,
"on_click_diary_card"
,
yesterday
)
chi_ctr_precise_new_yesterday
=
chi_DATA_yesterday
(
"clk_count_newUser_all_a"
,
"clk_count_newUser_all_b"
,
"imp_count_newUser_all_precise"
,
"on_click_diary_card"
,
yesterday
)
temp2_new
=
[
float
(
chi_ctr_precise_new_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctr_precise_new_yesterday
))]
temp2_new
=
[
float
(
chi_ctr_precise_new_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctr_precise_new_yesterday
))]
# print(temp2)
ctr_tst_new
=
data_cal
(
temp1_new
,
temp2_new
)
ctr_tst_new
=
data_cal
(
temp1_new
,
temp2_new
)
chi_cal
(
ctr_tst_new
)
chi_cal
(
ctr_tst_new
)
...
@@ -281,40 +278,40 @@ chi_cal(ctr_tst_new)
...
@@ -281,40 +278,40 @@ chi_cal(ctr_tst_new)
print
(
"【3】老用户CVR数据波动假设检验结果:"
)
print
(
"【3】老用户CVR数据波动假设检验结果:"
)
chi_cvr_old_recently
=
chi_DATA_recently_all
(
"diary_meigou_oldUser"
,
"diary_clk_oldUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
chi_cvr_old_recently
=
chi_DATA_recently_all
(
"diary_meigou_oldUser"
,
"diary_clk_oldUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
cvr_old
=
[
float
(
str
(
Decimal
(
chi_cvr_old_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_cvr_old_recently
))]
cvr_old
=
[
float
(
str
(
Decimal
(
chi_cvr_old_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_cvr_old_recently
))]
# print(temp1)
chi_cvr_old_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_oldUser"
,
"diary_clk_oldUser"
,
"diary_meigou_crv"
,
yesterday
)
chi_cvr_old_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_oldUser"
,
"diary_clk_oldUser"
,
"diary_meigou_crv"
,
yesterday
)
cvr_old2
=
[
float
(
chi_cvr_old_yesterday
[
i
])
for
i
in
range
(
len
(
chi_cvr_old_yesterday
))]
cvr_old2
=
[
float
(
chi_cvr_old_yesterday
[
i
])
for
i
in
range
(
len
(
chi_cvr_old_yesterday
))]
# print(temp2)
cvr_tst_old
=
data_cal
(
cvr_old
,
cvr_old2
)
cvr_tst_old
=
data_cal
(
cvr_old
,
cvr_old2
)
chi_cal
(
cvr_tst_old
)
chi_cal
(
cvr_tst_old
)
#老用户美购转化数据
#老用户美购转化数据
print
(
"【4】新用户CVR数据波动假设检验结果:"
)
print
(
"【4】新用户CVR数据波动假设检验结果:"
)
chi_cvr_new_recently
=
chi_DATA_recently_all
(
"diary_meigou_newUser"
,
"diary_clk_newUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
chi_cvr_new_recently
=
chi_DATA_recently_all
(
"diary_meigou_newUser"
,
"diary_clk_newUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
cvr_new
=
[
float
(
str
(
Decimal
(
chi_cvr_new_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_cvr_new_recently
))]
cvr_new
=
[
float
(
str
(
Decimal
(
chi_cvr_new_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_cvr_new_recently
))]
# print(temp1)
chi_cvr_new_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_newUser"
,
"diary_clk_newUser"
,
"diary_meigou_crv"
,
yesterday
)
chi_cvr_new_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_newUser"
,
"diary_clk_newUser"
,
"diary_meigou_crv"
,
yesterday
)
cvr_new2
=
[
float
(
chi_cvr_new_yesterday
[
i
])
for
i
in
range
(
len
(
chi_cvr_new_yesterday
))]
cvr_new2
=
[
float
(
chi_cvr_new_yesterday
[
i
])
for
i
in
range
(
len
(
chi_cvr_new_yesterday
))]
# print(temp2)
cvr_tst_new
=
data_cal
(
cvr_new
,
cvr_new2
)
cvr_tst_new
=
data_cal
(
cvr_new
,
cvr_new2
)
chi_cal
(
cvr_tst_new
)
chi_cal
(
cvr_tst_new
)
#老用户美购转化数据
#老用户美购转化数据
print
(
"【5】老用户CT-CVR数据波动假设检验结果:"
)
print
(
"【5】老用户CT-CVR数据波动假设检验结果:"
)
chi_ctcvr_old_recently
=
chi_DATA_recently_all
(
"diary_meigou_oldUser"
,
"diary_exp_oldUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
chi_ctcvr_old_recently
=
chi_DATA_recently_all
(
"diary_meigou_oldUser"
,
"diary_exp_oldUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
ctcvr_old
=
[
float
(
str
(
Decimal
(
chi_ctcvr_old_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctcvr_old_recently
))]
ctcvr_old
=
[
float
(
str
(
Decimal
(
chi_ctcvr_old_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctcvr_old_recently
))]
# print(temp1)
chi_ctcvr_old_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_oldUser"
,
"diary_exp_oldUser"
,
"diary_meigou_crv"
,
yesterday
)
chi_ctcvr_old_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_oldUser"
,
"diary_exp_oldUser"
,
"diary_meigou_crv"
,
yesterday
)
ctcvr_old2
=
[
float
(
chi_ctcvr_old_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctcvr_old_yesterday
))]
ctcvr_old2
=
[
float
(
chi_ctcvr_old_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctcvr_old_yesterday
))]
# print(temp2)
ctcvr_tst_old
=
data_cal
(
ctcvr_old
,
ctcvr_old2
)
ctcvr_tst_old
=
data_cal
(
ctcvr_old
,
ctcvr_old2
)
chi_cal
(
ctcvr_tst_old
)
chi_cal
(
ctcvr_tst_old
)
#老用户美购转化数据
#老用户美购转化数据
print
(
"【6】新用户CT-CVR数据波动假设检验结果:"
)
print
(
"【6】新用户CT-CVR数据波动假设检验结果:"
)
chi_ctcvr_new_recently
=
chi_DATA_recently_all
(
"diary_meigou_newUser"
,
"diary_exp_newUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
chi_ctcvr_new_recently
=
chi_DATA_recently_all
(
"diary_meigou_newUser"
,
"diary_exp_newUser"
,
"diary_meigou_crv"
,
five_days
,
yesterday
)
ctcvr_new
=
[
float
(
str
(
Decimal
(
chi_ctcvr_new_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctcvr_new_recently
))]
ctcvr_new
=
[
float
(
str
(
Decimal
(
chi_ctcvr_new_recently
[
i
])
.
quantize
(
Decimal
(
'0.0'
))))
for
i
in
range
(
len
(
chi_ctcvr_new_recently
))]
# print(temp1)
chi_ctcvr_new_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_newUser"
,
"diary_exp_newUser"
,
"diary_meigou_crv"
,
yesterday
)
chi_ctcvr_new_yesterday
=
chi_DATA_yesterday_all
(
"diary_meigou_newUser"
,
"diary_exp_newUser"
,
"diary_meigou_crv"
,
yesterday
)
ctcvr_new2
=
[
float
(
chi_ctcvr_new_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctcvr_new_yesterday
))]
ctcvr_new2
=
[
float
(
chi_ctcvr_new_yesterday
[
i
])
for
i
in
range
(
len
(
chi_ctcvr_new_yesterday
))]
# print(temp2)
ctcvr_tst_new
=
data_cal
(
ctcvr_new
,
ctcvr_new2
)
ctcvr_tst_new
=
data_cal
(
ctcvr_new
,
ctcvr_new2
)
chi_cal
(
ctcvr_tst_new
)
chi_cal
(
ctcvr_tst_new
)
...
@@ -404,11 +401,39 @@ print("【8-2】老用户精准曝光CTR数据波动5日内均值:{}%".format(me
...
@@ -404,11 +401,39 @@ print("【8-2】老用户精准曝光CTR数据波动5日内均值:{}%".format(me
print
(
"
\n
"
)
print
(
"
\n
"
)
# print("============================分割线===================================")
# print(chi_ctr_precise_recently)
#根据新老用户进行区分
# print(chi_ctr_precise_yesterday)
# print("============================新用户各指标假设检验结果分析===================================")
print
(
"============================分割线==================================="
)
# #新用户cvr假设检验
#保存文件
# print("【1】新用户CVR假设检验结果:")
# crv_new_ttest1=t_test(x_crv_new,y_crv_new)
# #新用户ct_cvr假设检验
# print("【3】新用户CT-CVR假设检验结果:")
# ctcrv_new_ttest1=t_test(x_ctcrv_new,y_ctcrv_new)
# #新用户ctr假设检验
# print("【5】新用户CTR假设检验结果:")
# ctr_new_ttest1=t_test(x_ctr_new,y_ctr_new)
# #新用户ctr(on_click_diary_card)假设检验
# print("【7】新用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_new_o_ttest1=t_test(x_ctr_new_o,y_ctr_new_o)
#
#
#
#
#
# print("============================老用户各指标假设检验结果分析===================================")
# #老用户cvr假设检验
# print("【2】老用户CVR假设检验结果:")
# crv_old_ttest1=t_test(x_crv_old,y_crv_old)
# # #老用户ct_cvr假设检验
# print("【4】老用户CT-CVR假设检验结果:")
# ctcrv_old_ttest1=t_test(x_ctcrv_old,y_ctcrv_old)
# #老用户ctr假设检验
# print("【6】老用户CTR假设检验结果:")
# ctr_old_ttest1=t_test(x_ctr_old,y_ctr_old)
# #老用户ctr(on_click_diary_card)假设检验
# print("【8】老用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_old_o_ttest1=t_test(x_ctr_old_o,y_ctr_old_o)
...
...
eda/recommended_indexs/send_email.py
View file @
3591a3f2
##发送邮件
# ##发送邮件
#
# #coding=utf-8
#
# import smtplib
# from email.mime.text import MIMEText
# from email.utils import formataddr
# from email.mime.application import MIMEApplication
# import datetime
#
# from email.mime.multipart import MIMEMultipart
#
# my_sender='wangzhiwei@igengmei.com'
# my_pass = 'RiKEcsHAgesCZ7yd'
# my_user1='wangzhiwei@igengmei.com'
# my_user2='gaoyazhe@igengmei.com'
# my_user3='huangkai@igengmei.com'
# def mail():
# ret = True
# pdfFile = 'hypothesis.txt'
# pdfApart = MIMEApplication(open(pdfFile, 'rb').read())
# pdfApart.add_header('Content-Disposition', 'attachment', filename=pdfFile)
# m = MIMEMultipart()
# m.attach(pdfApart)
# m['Subject'] = '数据指标监控数据(假设检验)'
# m['From'] = '王志伟<wangzhiwei@igengmei.com>'
#
#
# try:
# # text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.baidu.com"
# # msg = MIMEText(text, 'plain', 'utf-8')
# # msg['From'] = formataddr(["王志伟", my_sender])
# # msg['To'] = my_user1
# # msg['Subject'] = str(datetime.date.today()) + "-esmm多目标模型训练指标统计"
# server = smtplib.SMTP_SSL("smtp.exmail.qq.com", 465)
# server.login(my_sender, my_pass)
# server.sendmail(my_sender, [my_user1,my_user2,my_user3], m.as_string())
# server.quit()
# except Exception:
# ret=False
# return ret
#
# ret=mail()
# if ret:
# print("邮件发送成功")
# else:
# print("邮件发送失败")
#####尝试发送邮箱,不带附件
#coding=utf-8
#coding=utf-8
import
smtplib
import
smtplib
from
email.mime.text
import
MIMEText
from
email.mime.text
import
MIMEText
from
email.utils
import
formataddr
from
email.utils
import
formataddr
from
email.mime.application
import
MIMEApplication
import
datetime
import
datetime
from
email.mime.multipart
import
MIMEMultipart
my_sender
=
'wangzhiwei@igengmei.com'
my_sender
=
'wangzhiwei@igengmei.com'
my_pass
=
'RiKEcsHAgesCZ7yd'
my_pass
=
'RiKEcsHAgesCZ7yd'
my_user1
=
'wangzhiwei@igengmei.com'
my_user1
=
'wangzhiwei@igengmei.com'
# my_user2='gaoyazhe@igengmei.com'
# my_user2='zhangyanzhao@igengmei.com'
# my_user3='huangkai@igengmei.com'
def
mail
():
def
mail
():
ret
=
True
ret
=
True
pdfFile
=
'hypothesis.txt'
pdfApart
=
MIMEApplication
(
open
(
pdfFile
,
'rb'
)
.
read
())
pdfApart
.
add_header
(
'Content-Disposition'
,
'attachment'
,
filename
=
pdfFile
)
try
:
try
:
text
=
"Hi!
\n
How are you?
\n
Here is the link you wanted:
\n
http://www.baidu.com"
with
open
(
'hypothesis.txt'
)
as
f
:
m
=
MIMEMultipart
(
text
,
'plain'
,
'utf-8'
)
stat_data
=
f
.
read
()
m
.
attach
(
pdfApart
)
msg
=
MIMEText
(
stat_data
,
'plain'
,
'utf-8'
)
m
[
'Subject'
]
=
'数据指标监控数据(假设检验)'
msg
[
'From'
]
=
formataddr
([
"王志伟"
,
my_sender
])
m
[
'From'
]
=
'王志伟<wangzhiwei@igengmei.com>'
msg
[
'To'
]
=
my_user1
# msg = MIMEText(text, 'plain', 'utf-8')
msg
[
'Subject'
]
=
str
(
datetime
.
date
.
today
())
+
"-数据指标监控数据(假设检验)"
# msg['From'] = formataddr(["王志伟", my_sender])
server
=
smtplib
.
SMTP_SSL
(
"smtp.exmail.qq.com"
,
465
)
# msg['To'] = my_user1
# msg['Subject'] = str(datetime.date.today()) + "-esmm多目标模型训练指标统计"
server
=
smtplib
.
SMTP_SSL
(
"smtp.exmail.qq.com"
,
465
)
server
.
login
(
my_sender
,
my_pass
)
server
.
login
(
my_sender
,
my_pass
)
server
.
sendmail
(
my_sender
,
[
my_user1
],
m
.
as_string
())
server
.
sendmail
(
my_sender
,[
my_user1
],
msg
.
as_string
())
server
.
quit
()
server
.
quit
()
except
Exception
:
except
Exception
:
ret
=
False
ret
=
False
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment