Commit 3591a3f2 authored by 王志伟's avatar 王志伟

send_email

parent 883da871
...@@ -36,7 +36,6 @@ def get_somedate(): ...@@ -36,7 +36,6 @@ def get_somedate():
someday = someday.strftime("%Y-%m-%d") someday = someday.strftime("%Y-%m-%d")
return someday return someday
ten_days=get_somedate() ten_days=get_somedate()
# print(ten_days)
print("===========分割线,T检验最近10日指标与策略前10日指标是否获得显著提升============") print("===========分割线,T检验最近10日指标与策略前10日指标是否获得显著提升============")
#获取最近10天的数据 #获取最近10天的数据
def DATA_recently(x,y,z,q,t): def DATA_recently(x,y,z,q,t):
...@@ -138,7 +137,6 @@ def t_test(x,y): #进行t检验 ...@@ -138,7 +137,6 @@ def t_test(x,y): #进行t检验
else: #认为数据方差不具有齐性,equal_var=false else: #认为数据方差不具有齐性,equal_var=false
t_test = ttest_ind(x, y, equal_var=False) t_test = ttest_ind(x, y, equal_var=False)
t_p_value = t_test[1] t_p_value = t_test[1]
# print(t_p_value)
if t_p_value > 0.05: if t_p_value > 0.05:
print("95%置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著提升,p_value:{}" .format(t_p_value)) print("95%置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著提升,p_value:{}" .format(t_p_value))
print("\n") print("\n")
...@@ -224,7 +222,6 @@ def data_cal(x,y): ...@@ -224,7 +222,6 @@ def data_cal(x,y):
def chi_cal(data): def chi_cal(data):
data['共计'] = data.apply(lambda x: x.sum(), axis=1) data['共计'] = data.apply(lambda x: x.sum(), axis=1)
# print(data)
data.loc['共计'] = data.apply(lambda x: x.sum()) data.loc['共计'] = data.apply(lambda x: x.sum())
t1=data.iloc[0] t1=data.iloc[0]
t2=data.iloc[1] t2=data.iloc[1]
...@@ -249,20 +246,20 @@ def chi_cal(data): ...@@ -249,20 +246,20 @@ def chi_cal(data):
v=(len(data)-1)*(data.columns.size-1) v=(len(data)-1)*(data.columns.size-1)
#查表发现阈值为3.84 #查表发现阈值为3.84
if X>3.84: if X>3.84:
print("数据波动较大,超出正常波动范围,95%可能性属于指标显著变化,请关注") print("数据波动较大,超出正常波动范围,95%可能性属于指标【显著变化,请关注】")
print("\n") print("\n")
else: else:
print("数据波动较小,95%可能性属于正常波动范围") print("数据波动较小,95%可能性属于【正常波动】范围")
print("\n") print("\n")
#老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card) #老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("【1】(精准曝光)首页精选日记本列表老用户CTR数据波动假设检验结果:") print("【1】(精准曝光)首页精选日记本列表老用户CTR数据波动假设检验结果:")
chi_ctr_precise_old_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday) chi_ctr_precise_old_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1_old=[float(str(Decimal(chi_ctr_precise_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_old_recently))] temp1_old=[float(str(Decimal(chi_ctr_precise_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_old_recently))]
# print(temp1)
chi_ctr_precise_old_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",yesterday) chi_ctr_precise_old_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",yesterday)
temp2_old=[float(chi_ctr_precise_old_yesterday[i]) for i in range(len(chi_ctr_precise_old_yesterday))] temp2_old=[float(chi_ctr_precise_old_yesterday[i]) for i in range(len(chi_ctr_precise_old_yesterday))]
# print(temp2)
ctr_tst_old=data_cal(temp1_old,temp2_old) ctr_tst_old=data_cal(temp1_old,temp2_old)
chi_cal(ctr_tst_old) chi_cal(ctr_tst_old)
...@@ -270,10 +267,10 @@ chi_cal(ctr_tst_old) ...@@ -270,10 +267,10 @@ chi_cal(ctr_tst_old)
print("【2】(精准曝光)首页精选日记本列表新用户CTR数据波动假设检验结果:") print("【2】(精准曝光)首页精选日记本列表新用户CTR数据波动假设检验结果:")
chi_ctr_precise_new_recently=chi_DATA_recently("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",five_days,yesterday) chi_ctr_precise_new_recently=chi_DATA_recently("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1_new=[float(str(Decimal(chi_ctr_precise_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_new_recently))] temp1_new=[float(str(Decimal(chi_ctr_precise_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_new_recently))]
# print(temp1)
chi_ctr_precise_new_yesterday=chi_DATA_yesterday("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",yesterday) chi_ctr_precise_new_yesterday=chi_DATA_yesterday("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",yesterday)
temp2_new=[float(chi_ctr_precise_new_yesterday[i]) for i in range(len(chi_ctr_precise_new_yesterday))] temp2_new=[float(chi_ctr_precise_new_yesterday[i]) for i in range(len(chi_ctr_precise_new_yesterday))]
# print(temp2)
ctr_tst_new=data_cal(temp1_new,temp2_new) ctr_tst_new=data_cal(temp1_new,temp2_new)
chi_cal(ctr_tst_new) chi_cal(ctr_tst_new)
...@@ -281,40 +278,40 @@ chi_cal(ctr_tst_new) ...@@ -281,40 +278,40 @@ chi_cal(ctr_tst_new)
print("【3】老用户CVR数据波动假设检验结果:") print("【3】老用户CVR数据波动假设检验结果:")
chi_cvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",five_days,yesterday) chi_cvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",five_days,yesterday)
cvr_old=[float(str(Decimal(chi_cvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_old_recently))] cvr_old=[float(str(Decimal(chi_cvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_old_recently))]
# print(temp1)
chi_cvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",yesterday) chi_cvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",yesterday)
cvr_old2=[float(chi_cvr_old_yesterday[i]) for i in range(len(chi_cvr_old_yesterday))] cvr_old2=[float(chi_cvr_old_yesterday[i]) for i in range(len(chi_cvr_old_yesterday))]
# print(temp2)
cvr_tst_old=data_cal(cvr_old,cvr_old2) cvr_tst_old=data_cal(cvr_old,cvr_old2)
chi_cal(cvr_tst_old) chi_cal(cvr_tst_old)
#老用户美购转化数据 #老用户美购转化数据
print("【4】新用户CVR数据波动假设检验结果:") print("【4】新用户CVR数据波动假设检验结果:")
chi_cvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",five_days,yesterday) chi_cvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",five_days,yesterday)
cvr_new=[float(str(Decimal(chi_cvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_new_recently))] cvr_new=[float(str(Decimal(chi_cvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_new_recently))]
# print(temp1)
chi_cvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",yesterday) chi_cvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",yesterday)
cvr_new2=[float(chi_cvr_new_yesterday[i]) for i in range(len(chi_cvr_new_yesterday))] cvr_new2=[float(chi_cvr_new_yesterday[i]) for i in range(len(chi_cvr_new_yesterday))]
# print(temp2)
cvr_tst_new=data_cal(cvr_new,cvr_new2) cvr_tst_new=data_cal(cvr_new,cvr_new2)
chi_cal(cvr_tst_new) chi_cal(cvr_tst_new)
#老用户美购转化数据 #老用户美购转化数据
print("【5】老用户CT-CVR数据波动假设检验结果:") print("【5】老用户CT-CVR数据波动假设检验结果:")
chi_ctcvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",five_days,yesterday) chi_ctcvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",five_days,yesterday)
ctcvr_old=[float(str(Decimal(chi_ctcvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_old_recently))] ctcvr_old=[float(str(Decimal(chi_ctcvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_old_recently))]
# print(temp1)
chi_ctcvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",yesterday) chi_ctcvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",yesterday)
ctcvr_old2=[float(chi_ctcvr_old_yesterday[i]) for i in range(len(chi_ctcvr_old_yesterday))] ctcvr_old2=[float(chi_ctcvr_old_yesterday[i]) for i in range(len(chi_ctcvr_old_yesterday))]
# print(temp2)
ctcvr_tst_old=data_cal(ctcvr_old,ctcvr_old2) ctcvr_tst_old=data_cal(ctcvr_old,ctcvr_old2)
chi_cal(ctcvr_tst_old) chi_cal(ctcvr_tst_old)
#老用户美购转化数据 #老用户美购转化数据
print("【6】新用户CT-CVR数据波动假设检验结果:") print("【6】新用户CT-CVR数据波动假设检验结果:")
chi_ctcvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",five_days,yesterday) chi_ctcvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",five_days,yesterday)
ctcvr_new=[float(str(Decimal(chi_ctcvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_new_recently))] ctcvr_new=[float(str(Decimal(chi_ctcvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_new_recently))]
# print(temp1)
chi_ctcvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",yesterday) chi_ctcvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",yesterday)
ctcvr_new2=[float(chi_ctcvr_new_yesterday[i]) for i in range(len(chi_ctcvr_new_yesterday))] ctcvr_new2=[float(chi_ctcvr_new_yesterday[i]) for i in range(len(chi_ctcvr_new_yesterday))]
# print(temp2)
ctcvr_tst_new=data_cal(ctcvr_new,ctcvr_new2) ctcvr_tst_new=data_cal(ctcvr_new,ctcvr_new2)
chi_cal(ctcvr_tst_new) chi_cal(ctcvr_tst_new)
...@@ -404,11 +401,39 @@ print("【8-2】老用户精准曝光CTR数据波动5日内均值:{}%".format(me ...@@ -404,11 +401,39 @@ print("【8-2】老用户精准曝光CTR数据波动5日内均值:{}%".format(me
print("\n") print("\n")
# print("============================分割线===================================")
# print(chi_ctr_precise_recently) #根据新老用户进行区分
# print(chi_ctr_precise_yesterday) # print("============================新用户各指标假设检验结果分析===================================")
print("============================分割线===================================") # #新用户cvr假设检验
#保存文件 # print("【1】新用户CVR假设检验结果:")
# crv_new_ttest1=t_test(x_crv_new,y_crv_new)
# #新用户ct_cvr假设检验
# print("【3】新用户CT-CVR假设检验结果:")
# ctcrv_new_ttest1=t_test(x_ctcrv_new,y_ctcrv_new)
# #新用户ctr假设检验
# print("【5】新用户CTR假设检验结果:")
# ctr_new_ttest1=t_test(x_ctr_new,y_ctr_new)
# #新用户ctr(on_click_diary_card)假设检验
# print("【7】新用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_new_o_ttest1=t_test(x_ctr_new_o,y_ctr_new_o)
#
#
#
#
#
# print("============================老用户各指标假设检验结果分析===================================")
# #老用户cvr假设检验
# print("【2】老用户CVR假设检验结果:")
# crv_old_ttest1=t_test(x_crv_old,y_crv_old)
# # #老用户ct_cvr假设检验
# print("【4】老用户CT-CVR假设检验结果:")
# ctcrv_old_ttest1=t_test(x_ctcrv_old,y_ctcrv_old)
# #老用户ctr假设检验
# print("【6】老用户CTR假设检验结果:")
# ctr_old_ttest1=t_test(x_ctr_old,y_ctr_old)
# #老用户ctr(on_click_diary_card)假设检验
# print("【8】老用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_old_o_ttest1=t_test(x_ctr_old_o,y_ctr_old_o)
......
##发送邮件 # ##发送邮件
#
# #coding=utf-8
#
# import smtplib
# from email.mime.text import MIMEText
# from email.utils import formataddr
# from email.mime.application import MIMEApplication
# import datetime
#
# from email.mime.multipart import MIMEMultipart
#
# my_sender='wangzhiwei@igengmei.com'
# my_pass = 'RiKEcsHAgesCZ7yd'
# my_user1='wangzhiwei@igengmei.com'
# my_user2='gaoyazhe@igengmei.com'
# my_user3='huangkai@igengmei.com'
# def mail():
# ret = True
# pdfFile = 'hypothesis.txt'
# pdfApart = MIMEApplication(open(pdfFile, 'rb').read())
# pdfApart.add_header('Content-Disposition', 'attachment', filename=pdfFile)
# m = MIMEMultipart()
# m.attach(pdfApart)
# m['Subject'] = '数据指标监控数据(假设检验)'
# m['From'] = '王志伟<wangzhiwei@igengmei.com>'
#
#
# try:
# # text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.baidu.com"
# # msg = MIMEText(text, 'plain', 'utf-8')
# # msg['From'] = formataddr(["王志伟", my_sender])
# # msg['To'] = my_user1
# # msg['Subject'] = str(datetime.date.today()) + "-esmm多目标模型训练指标统计"
# server = smtplib.SMTP_SSL("smtp.exmail.qq.com", 465)
# server.login(my_sender, my_pass)
# server.sendmail(my_sender, [my_user1,my_user2,my_user3], m.as_string())
# server.quit()
# except Exception:
# ret=False
# return ret
#
# ret=mail()
# if ret:
# print("邮件发送成功")
# else:
# print("邮件发送失败")
#####尝试发送邮箱,不带附件
#coding=utf-8 #coding=utf-8
import smtplib import smtplib
from email.mime.text import MIMEText from email.mime.text import MIMEText
from email.utils import formataddr from email.utils import formataddr
from email.mime.application import MIMEApplication
import datetime import datetime
from email.mime.multipart import MIMEMultipart
my_sender='wangzhiwei@igengmei.com' my_sender='wangzhiwei@igengmei.com'
my_pass = 'RiKEcsHAgesCZ7yd' my_pass = 'RiKEcsHAgesCZ7yd'
my_user1='wangzhiwei@igengmei.com' my_user1='wangzhiwei@igengmei.com'
# my_user2='gaoyazhe@igengmei.com' # my_user2='zhangyanzhao@igengmei.com'
# my_user3='huangkai@igengmei.com'
def mail(): def mail():
ret = True ret=True
pdfFile = 'hypothesis.txt'
pdfApart = MIMEApplication(open(pdfFile, 'rb').read())
pdfApart.add_header('Content-Disposition', 'attachment', filename=pdfFile)
try: try:
text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.baidu.com" with open('hypothesis.txt') as f:
m = MIMEMultipart(text, 'plain', 'utf-8') stat_data = f.read()
m.attach(pdfApart) msg=MIMEText(stat_data,'plain','utf-8')
m['Subject'] = '数据指标监控数据(假设检验)' msg['From']=formataddr(["王志伟",my_sender])
m['From'] = '王志伟<wangzhiwei@igengmei.com>' msg['To']=my_user1
# msg = MIMEText(text, 'plain', 'utf-8') msg['Subject']= str(datetime.date.today())+"-数据指标监控数据(假设检验)"
# msg['From'] = formataddr(["王志伟", my_sender]) server=smtplib.SMTP_SSL("smtp.exmail.qq.com", 465)
# msg['To'] = my_user1
# msg['Subject'] = str(datetime.date.today()) + "-esmm多目标模型训练指标统计"
server = smtplib.SMTP_SSL("smtp.exmail.qq.com", 465)
server.login(my_sender, my_pass) server.login(my_sender, my_pass)
server.sendmail(my_sender, [my_user1], m.as_string()) server.sendmail(my_sender,[my_user1],msg.as_string())
server.quit() server.quit()
except Exception: except Exception:
ret=False ret=False
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment