Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
4bba20c2
Commit
4bba20c2
authored
Sep 25, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test
parent
22bcaa40
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
73 additions
and
49 deletions
+73
-49
location.py
location.py
+42
-1
ctr.py
tensnsorflow/ctr.py
+31
-0
device_read_time_normal.py
tensnsorflow/device_read_time_normal.py
+0
-48
No files found.
location.py
View file @
4bba20c2
import
numpy
as
np
,
pandas
as
pd
from
sklearn.cluster
import
DBSCAN
from
shapely.geometry
import
MultiPoint
import
geopandas
import
shapefile
from
matplotlib
import
pyplot
as
plt
data
=
pd
.
read_csv
(
"/Users/mac/Downloads/location.csv"
)
data
.
drop
([
"device_id"
,
"partition_date"
],
axis
=
1
,
inplace
=
True
)
data
=
data
[[
"lat"
,
"lng"
]]
data
=
data
.
as_matrix
()
.
astype
(
"float32"
,
copy
=
False
)
#convert to array
plt
.
title
(
"beijing location"
)
plt
.
scatter
(
latlngs
[:,
0
],
latlngs
[:,
1
],
s
=
1
,
c
=
"black"
,
marker
=
'.'
)
border_shape
=
shapefile
.
Reader
(
shape_path
)
border_shape_2
=
shapefile
.
Reader
(
shape_path_2huan
)
border_shape_5
=
shapefile
.
Reader
(
shape_path_5huan
)
border
=
border_shape
.
shapes
()
border_2
=
border_shape_2
.
shapes
()
border_5
=
border_shape_5
.
shapes
()
# 聚类中心区域
def
get_centermost_point
(
cluster
):
centroid
=
(
MultiPoint
(
cluster
)
.
centroid
.
x
,
MultiPoint
(
cluster
)
.
centroid
.
y
)
print
(
centroid
)
return
tuple
(
centroid
)
# #渲染聚类结果
for
border_detail
in
clusters
:
x
,
y
=
[],
[]
for
cell
in
border_detail
:
x
.
append
(
cell
[
0
])
y
.
append
(
cell
[
1
])
plt
.
scatter
(
x
,
y
,
marker
=
'o'
)
plt
.
show
()
# coding=utf-8
import
numpy
as
np
from
scipy.spatial.distance
import
cdist
...
...
@@ -51,4 +92,4 @@ for (label, color) in zip(unique_labels, colors):
plt
.
title
(
"DBSCAN on beijing_users"
)
plt
.
xlabel
(
"lat (scaled)"
)
plt
.
ylabel
(
"lng (scaled)"
)
plt
.
savefig
(
"results/(0.9,15)dbscan_wholesale.png"
,
format
=
"PNG"
)
#
plt.savefig("results/(0.9,15)dbscan_wholesale.png", format="PNG")
tensnsorflow/ctr.py
0 → 100644
View file @
4bba20c2
import
pandas
as
pd
import
pymysql
import
datetime
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchone
()[
0
]
db
.
close
()
return
result
def
get_ctr
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_prod'
)
yesterday
=
(
datetime
.
date
.
today
()
-
datetime
.
timedelta
(
days
=
1
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
yesterday
)
sql
=
"select count(*) from data_feed_exposure_precise where stat_date = '{}'"
.
format
(
yesterday
)
exposures
=
con_sql
(
db
,
sql
)
sql
=
"select count(*) from data_feed_exposure_precise where stat_date = '{}'"
.
format
(
yesterday
)
clicks
=
con_sql
(
db
,
sql
)
print
(
exposures
)
print
(
clicks
)
print
(
exposures
/
clicks
)
if
__name__
==
"__main__"
:
get_ctr
()
\ No newline at end of file
tensnsorflow/device_read_time_normal.py
deleted
100644 → 0
View file @
22bcaa40
import
pandas
as
pd
import
pymysql
from
sklearn.preprocessing
import
MinMaxScaler
from
sqlalchemy
import
create_engine
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
finally
:
db
.
close
()
return
df
def
normal
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select * from device_read_time"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"kongbai"
,
2
:
"eye"
,
3
:
"simi"
,
4
:
"zitizhifang"
,
5
:
"banyongjiu"
,
6
:
"teeth"
,
7
:
"kouchun"
,
8
:
"ear"
,
9
:
"nose"
,
10
:
"banyongjiuzhuang"
,
11
:
"qita"
,
12
:
"lunkuo"
,
13
:
"shoushen"
,
14
:
"skin"
,
16
:
"shenghuo"
,
17
:
"breast"
,
18
:
"hair"
,
19
:
"kangshuai"
,
20
:
"shili"
,
21
:
"chanhou"
,
22
:
"zhushe"
})
# device_id = df[["device_id"]]
# df = df.drop("device_id",axis=1)
# minMax = MinMaxScaler()
# result = pd.DataFrame(minMax.fit_transform(df),columns=["0","1","10","1024","1080","11",
# "12","13","2","2054","2214","3","4","5","6933",
# "7","9","922","929","971","992"])
# result = device_id.join(result)
l
=
list
(
df
.
columns
)
l
.
remove
(
"device_id"
)
df
[
"sum"
]
=
df
.
sum
(
axis
=
1
)
for
i
in
l
:
df
[
i
]
=
df
[
i
]
/
df
[
"sum"
]
df
=
df
.
drop
(
"sum"
,
axis
=
1
)
yconnect
=
create_engine
(
'mysql+pymysql://root:3SYz54LS9#^9sBvC@10.66.157.22:4000/jerry_test?charset=utf8'
)
pd
.
io
.
sql
.
to_sql
(
df
,
"device_read_time_normal"
,
yconnect
,
schema
=
'jerry_test'
,
if_exists
=
'fail'
,
index
=
False
)
if
__name__
==
"__main__"
:
normal
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment