Commit 51984b8f authored by 张彦钊's avatar 张彦钊

把esmm 预测后的日记队列数量由500改成1000

parent f7c756c2
......@@ -104,15 +104,15 @@ def feature_engineer():
unique_values = []
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select distinct stat_date from esmm_train_data_share"
sql = "select distinct stat_date from esmm_train_data_dwell"
unique_values.extend(get_unique(db,sql))
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select distinct ucity_id from esmm_train_data_share"
sql = "select distinct ucity_id from esmm_train_data_dwell"
unique_values.extend(get_unique(db, sql))
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select distinct ccity_name from esmm_train_data_share"
sql = "select distinct ccity_name from esmm_train_data_dwell"
unique_values.extend(get_unique(db, sql))
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
......@@ -162,16 +162,15 @@ def feature_engineer():
# unique_values.append("video")
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select max(stat_date) from esmm_train_data_share"
sql = "select max(stat_date) from esmm_train_data_dwell"
validate_date = con_sql(db, sql)[0].values.tolist()[0]
print("validate_date:" + validate_date)
temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
start = (temp - datetime.timedelta(days=180)).strftime("%Y-%m-%d")
print(start)
print("这是分享数据")
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC')
sql = "select distinct doctor.hospital_id from jerry_test.esmm_train_data_share e " \
sql = "select distinct doctor.hospital_id from jerry_test.esmm_train_data_dwell e " \
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
"where e.stat_date >= '{}'".format(start)
......@@ -191,89 +190,92 @@ def feature_engineer():
29 + apps_number + level2_number + level3_number + len(unique_values)))
value_map = dict(zip(unique_values, temp))
# sql = "select e.y,e.z,e.s,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
# "u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id," \
# "wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
# "ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3," \
# "k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time," \
# "e.device_id,e.cid_id " \
# "from jerry_test.esmm_train_data_share e left join jerry_test.user_feature u on e.device_id = u.device_id " \
# "left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
# "left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
# "left join jerry_test.device_app_list dl on e.device_id = dl.device_id " \
# "left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id " \
# "left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
# "left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id " \
# "left join jerry_test.question_tag question on e.device_id = question.device_id " \
# "left join jerry_test.search_tag search on e.device_id = search.device_id " \
# "left join jerry_test.budan_tag budan on e.device_id = budan.device_id " \
# "left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
# "left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
# "left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
# "left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
# "left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
# "left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date " \
# "where e.stat_date >= '{}'".format(start)
#
# df = spark.sql(sql)
#
# df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
# "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids",
# "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"])
#
# df = df.na.fill(dict(zip(features, features)))
#
# rdd = df.select("stat_date", "y", "z", "app_list", "level2_ids", "level3_ids",
# "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
# "ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
# "hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
# "maintain_time", "recover_time", "search_tag2", "search_tag3","cid_id","device_id","s")\
# .rdd.repartition(200).map(
# lambda x: (x[0], float(x[1]), float(x[2]), app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
# app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map), app_list_func(x[7], leve2_map),
# app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map), app_list_func(x[10], leve2_map),
# app_list_func(x[11], leve2_map), app_list_func(x[12], leve2_map),
# [value_map.get(x[0], 1), value_map.get(x[13], 2), value_map.get(x[14], 3), value_map.get(x[15], 4),
# value_map.get(x[16], 5), value_map.get(x[17], 6), value_map.get(x[18], 7), value_map.get(x[19], 8),
# value_map.get(x[20], 9), value_map.get(x[21], 10),
# value_map.get(x[22], 11), value_map.get(x[23], 12), value_map.get(x[24], 13),
# value_map.get(x[25], 14), value_map.get(x[26], 15)],
# app_list_func(x[27], leve2_map), app_list_func(x[28], leve3_map),x[13],x[29],x[30],float(x[31])
# ))
#
#
# rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)
#
# # TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
#
# train = rdd.filter(lambda x: x[0] != validate_date).map(
# lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
# x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18],x[19]))
# f = time.time()
# spark.createDataFrame(train).toDF("y", "z", "app_list", "level2_list", "level3_list",
# "tag1_list", "tag2_list", "tag3_list", "tag4_list",
# "tag5_list", "tag6_list", "tag7_list", "ids",
# "search_tag2_list","search_tag3_list","city","cid_id","uid","s") \
# .repartition(1).write.format("tfrecords").save(path=path + "tr/", mode="overwrite")
# h = time.time()
# print("train tfrecord done")
# print((h - f) / 60)
#
# get_pre_number()
#
# test = rdd.filter(lambda x: x[0] == validate_date).map(
# lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
# x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18],x[19]))
#
# spark.createDataFrame(test).toDF("y", "z", "app_list", "level2_list", "level3_list",
# "tag1_list", "tag2_list", "tag3_list", "tag4_list",
# "tag5_list", "tag6_list", "tag7_list", "ids",
# "search_tag2_list","search_tag3_list","city","cid_id","uid","s") \
# .repartition(1).write.format("tfrecords").save(path=path + "va/", mode="overwrite")
#
# print("va tfrecord done")
#
# rdd.unpersist()
sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id," \
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3," \
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time," \
"e.device_id,e.cid_id " \
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id " \
"left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id " \
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id " \
"left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id " \
"left join jerry_test.question_tag question on e.device_id = question.device_id " \
"left join jerry_test.search_tag search on e.device_id = search.device_id " \
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id " \
"left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date " \
"where e.stat_date >= '{}'".format(start)
df = spark.sql(sql)
df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids",
"tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"])
df = df.na.fill(dict(zip(features, features)))
rdd = df.select("stat_date", "y", "z", "app_list", "level2_ids", "level3_ids",
"tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
"ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
"hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
"maintain_time", "recover_time", "search_tag2", "search_tag3","cid_id","device_id")\
.rdd.repartition(200).map(
lambda x: (x[0], float(x[1]), float(x[2]), app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map), app_list_func(x[7], leve2_map),
app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map), app_list_func(x[10], leve2_map),
app_list_func(x[11], leve2_map), app_list_func(x[12], leve2_map),
[value_map.get(x[0], 1), value_map.get(x[13], 2), value_map.get(x[14], 3), value_map.get(x[15], 4),
value_map.get(x[16], 5), value_map.get(x[17], 6), value_map.get(x[18], 7), value_map.get(x[19], 8),
value_map.get(x[20], 9), value_map.get(x[21], 10),
value_map.get(x[22], 11), value_map.get(x[23], 12), value_map.get(x[24], 13),
value_map.get(x[25], 14), value_map.get(x[26], 15)],
app_list_func(x[27], leve2_map), app_list_func(x[28], leve3_map),x[13],x[29],x[30]
))
rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train = rdd.map(
lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18]))
f = time.time()
spark.createDataFrame(train).toDF("y", "z", "app_list", "level2_list", "level3_list",
"tag1_list", "tag2_list", "tag3_list", "tag4_list",
"tag5_list", "tag6_list", "tag7_list", "ids",
"search_tag2_list","search_tag3_list","city","cid_id","uid") \
.repartition(1).write.format("tfrecords").save(path=path + "tr/", mode="overwrite")
h = time.time()
print("train tfrecord done")
print((h - f) / 60)
print("训练集样本总量:")
print(rdd.count())
get_pre_number()
test = rdd.filter(lambda x: x[0] == validate_date).map(
lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18]))
spark.createDataFrame(test).toDF("y", "z", "app_list", "level2_list", "level3_list",
"tag1_list", "tag2_list", "tag3_list", "tag4_list",
"tag5_list", "tag6_list", "tag7_list", "ids",
"search_tag2_list","search_tag3_list","city","cid_id","uid") \
.repartition(1).write.format("tfrecords").save(path=path + "va/", mode="overwrite")
print("va tfrecord done")
rdd.unpersist()
return validate_date, value_map, app_list_map, leve2_map, leve3_map
......@@ -285,7 +287,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3," \
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time " \
"from jerry_test.esmm_data e " \
"from jerry_test.esmm_pre_data e " \
"left join jerry_test.user_feature u on e.device_id = u.device_id " \
"left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
......@@ -299,8 +301,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
"left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date " \
"limit 20000"
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date"
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "hospital_id",
......@@ -388,9 +389,3 @@ if __name__ == '__main__':
get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
spark.stop()
......@@ -378,7 +378,7 @@ def trans(x):
def set_join(lst):
l = lst.unique().tolist()
r = [str(i) for i in l]
r =r[:500]
r =r[:1000]
return ','.join(r)
def df_sort(result,queue_name):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment