Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
51984b8f
Commit
51984b8f
authored
Jul 30, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
把esmm 预测后的日记队列数量由500改成1000
parent
f7c756c2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
94 additions
and
99 deletions
+94
-99
feature_engineering.py
eda/esmm/Model_pipline/feature_engineering.py
+93
-98
train.py
eda/esmm/Model_pipline/train.py
+1
-1
No files found.
eda/esmm/Model_pipline/feature_engineering.py
View file @
51984b8f
...
@@ -104,15 +104,15 @@ def feature_engineer():
...
@@ -104,15 +104,15 @@ def feature_engineer():
unique_values
=
[]
unique_values
=
[]
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct stat_date from esmm_train_data_
share
"
sql
=
"select distinct stat_date from esmm_train_data_
dwell
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ucity_id from esmm_train_data_
share
"
sql
=
"select distinct ucity_id from esmm_train_data_
dwell
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ccity_name from esmm_train_data_
share
"
sql
=
"select distinct ccity_name from esmm_train_data_
dwell
"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
...
@@ -162,16 +162,15 @@ def feature_engineer():
...
@@ -162,16 +162,15 @@ def feature_engineer():
# unique_values.append("video")
# unique_values.append("video")
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data_
share
"
sql
=
"select max(stat_date) from esmm_train_data_
dwell
"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
180
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
180
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
print
(
start
)
print
(
"这是分享数据"
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
sql
=
"select distinct doctor.hospital_id from jerry_test.esmm_train_data_
share
e "
\
sql
=
"select distinct doctor.hospital_id from jerry_test.esmm_train_data_
dwell
e "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
"where e.stat_date >= '{}'"
.
format
(
start
)
...
@@ -191,89 +190,92 @@ def feature_engineer():
...
@@ -191,89 +190,92 @@ def feature_engineer():
29
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
29
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
# sql = "select e.y,e.z,e.s,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
# "u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id," \
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
# "wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
# "ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3," \
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
# "k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time," \
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
# "e.device_id,e.cid_id " \
"e.device_id,e.cid_id "
\
# "from jerry_test.esmm_train_data_share e left join jerry_test.user_feature u on e.device_id = u.device_id " \
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
# "left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
# "left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
# "left join jerry_test.device_app_list dl on e.device_id = dl.device_id " \
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
# "left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id " \
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
# "left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
# "left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id " \
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id "
\
# "left join jerry_test.question_tag question on e.device_id = question.device_id " \
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
# "left join jerry_test.search_tag search on e.device_id = search.device_id " \
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
# "left join jerry_test.budan_tag budan on e.device_id = budan.device_id " \
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
# "left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
# "left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
# "left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
# "left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
# "left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
# "left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date " \
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
# "where e.stat_date >= '{}'".format(start)
"where e.stat_date >= '{}'"
.
format
(
start
)
#
# df = spark.sql(sql)
df
=
spark
.
sql
(
sql
)
#
# df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
# "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids",
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
# "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"])
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
#
# df = df.na.fill(dict(zip(features, features)))
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
#
# rdd = df.select("stat_date", "y", "z", "app_list", "level2_ids", "level3_ids",
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
# "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
# "ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
# "hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
# "maintain_time", "recover_time", "search_tag2", "search_tag3","cid_id","device_id","s")\
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
# .rdd.repartition(200).map(
.
rdd
.
repartition
(
200
)
.
map
(
# lambda x: (x[0], float(x[1]), float(x[2]), app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
# app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map), app_list_func(x[7], leve2_map),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
# app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map), app_list_func(x[10], leve2_map),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
# app_list_func(x[11], leve2_map), app_list_func(x[12], leve2_map),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
# [value_map.get(x[0], 1), value_map.get(x[13], 2), value_map.get(x[14], 3), value_map.get(x[15], 4),
[
value_map
.
get
(
x
[
0
],
1
),
value_map
.
get
(
x
[
13
],
2
),
value_map
.
get
(
x
[
14
],
3
),
value_map
.
get
(
x
[
15
],
4
),
# value_map.get(x[16], 5), value_map.get(x[17], 6), value_map.get(x[18], 7), value_map.get(x[19], 8),
value_map
.
get
(
x
[
16
],
5
),
value_map
.
get
(
x
[
17
],
6
),
value_map
.
get
(
x
[
18
],
7
),
value_map
.
get
(
x
[
19
],
8
),
# value_map.get(x[20], 9), value_map.get(x[21], 10),
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
# value_map.get(x[22], 11), value_map.get(x[23], 12), value_map.get(x[24], 13),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
# value_map.get(x[25], 14), value_map.get(x[26], 15)],
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
# app_list_func(x[27], leve2_map), app_list_func(x[28], leve3_map),x[13],x[29],x[30],float(x[31])
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
29
],
x
[
30
]
# ))
))
#
#
# rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
#
# # TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
#
# train = rdd.filter(lambda x: x[0] != validate_date).map(
train
=
rdd
.
map
(
# lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
# x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18],x[19]))
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]))
# f = time.time()
f
=
time
.
time
()
# spark.createDataFrame(train).toDF("y", "z", "app_list", "level2_list", "level3_list",
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
# "tag1_list", "tag2_list", "tag3_list", "tag4_list",
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
# "tag5_list", "tag6_list", "tag7_list", "ids",
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
# "search_tag2_list","search_tag3_list","city","cid_id","uid","s") \
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
# .repartition(1).write.format("tfrecords").save(path=path + "tr/", mode="overwrite")
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
# h = time.time()
h
=
time
.
time
()
# print("train tfrecord done")
print
(
"train tfrecord done"
)
# print((h - f) / 60)
print
((
h
-
f
)
/
60
)
#
# get_pre_number()
print
(
"训练集样本总量:"
)
#
print
(
rdd
.
count
())
# test = rdd.filter(lambda x: x[0] == validate_date).map(
# lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
get_pre_number
()
# x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18],x[19]))
#
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
# spark.createDataFrame(test).toDF("y", "z", "app_list", "level2_list", "level3_list",
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
# "tag1_list", "tag2_list", "tag3_list", "tag4_list",
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]))
# "tag5_list", "tag6_list", "tag7_list", "ids",
# "search_tag2_list","search_tag3_list","city","cid_id","uid","s") \
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
# .repartition(1).write.format("tfrecords").save(path=path + "va/", mode="overwrite")
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
#
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
# print("va tfrecord done")
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
#
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
# rdd.unpersist()
print
(
"va tfrecord done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
...
@@ -285,7 +287,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -285,7 +287,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_data e "
\
"from jerry_test.esmm_
pre_
data e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
...
@@ -299,8 +301,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -299,8 +301,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date"
"limit 20000"
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
...
@@ -388,9 +389,3 @@ if __name__ == '__main__':
...
@@ -388,9 +389,3 @@ if __name__ == '__main__':
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
spark
.
stop
()
spark
.
stop
()
eda/esmm/Model_pipline/train.py
View file @
51984b8f
...
@@ -378,7 +378,7 @@ def trans(x):
...
@@ -378,7 +378,7 @@ def trans(x):
def
set_join
(
lst
):
def
set_join
(
lst
):
l
=
lst
.
unique
()
.
tolist
()
l
=
lst
.
unique
()
.
tolist
()
r
=
[
str
(
i
)
for
i
in
l
]
r
=
[
str
(
i
)
for
i
in
l
]
r
=
r
[:
5
00
]
r
=
r
[:
10
00
]
return
','
.
join
(
r
)
return
','
.
join
(
r
)
def
df_sort
(
result
,
queue_name
):
def
df_sort
(
result
,
queue_name
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment