Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
5f70f44f
Commit
5f70f44f
authored
Apr 16, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
修改zhao分支上的esmm生产项目
parent
f9c7c687
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
97 additions
and
49 deletions
+97
-49
feature.py
eda/esmm/Model_pipline/feature.py
+82
-41
submit.sh
eda/esmm/Model_pipline/submit.sh
+3
-3
to_tfrecord.py
eda/esmm/Model_pipline/to_tfrecord.py
+7
-3
train.py
eda/esmm/Model_pipline/train.py
+5
-2
No files found.
eda/esmm/Model_pipline/feature.py
View file @
5f70f44f
...
...
@@ -40,44 +40,64 @@ def get_data():
start
=
(
temp
-
datetime
.
timedelta
(
days
=
300
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.
device_type,u.manufacturer,u.channel,c.top,e.device_id,cut.time,dl.app_list
"
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,
u.device_type,u.manufacturer,
"
\
"u.
channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids,feat.level2
"
\
"from {} e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
"left join device_app_list dl on e.device_id = dl.device_id "
\
"left join diary_feat feat on e.cid_id = feat.diary_id "
\
"where e.stat_date >= '{}'"
.
format
(
train_data_set
,
start
)
"where e.stat_date >= '{}'"
.
format
(
train_data_set
,
start
)
df
=
con_sql
(
db
,
sql
)
# print(df.shape)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel2_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"time"
,
12
:
"app_list"
})
print
(
"esmm data ok"
)
# print(df.head(2)
11
:
"time"
,
12
:
"app_list"
,
13
:
"service_id"
,
14
:
"level3_ids"
,
15
:
"level2"
})
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time "
\
"from train_Knowledge_network_data"
knowledge
=
con_sql
(
db
,
sql
)
knowledge
=
knowledge
.
rename
(
columns
=
{
0
:
"level2"
,
1
:
"method"
,
2
:
"min"
,
3
:
"max"
,
4
:
"treatment_time"
,
5
:
"maintain_time"
,
6
:
"recover_time"
})
knowledge
[
"level2"
]
=
knowledge
[
"level2"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
knowledge
,
on
=
'level2'
,
how
=
'left'
)
df
=
df
.
drop
(
"level2"
,
axis
=
1
)
service_id
=
tuple
(
df
[
"service_id"
]
.
unique
())
db
=
pymysql
.
connect
(
host
=
'rdsfewzdmf0jfjp9un8xj.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'BJQaT9VzDcuPBqkd'
,
db
=
'zhengxing'
)
sql
=
"select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id "
\
"where s.id in {}"
.
format
(
service_id
)
hospital
=
con_sql
(
db
,
sql
)
hospital
=
hospital
.
rename
(
columns
=
{
0
:
"service_id"
,
1
:
"hospital_id"
})
# print(hospital.head())
# print("hospital")
# print(hospital.count())
hospital
[
"service_id"
]
=
hospital
[
"service_id"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
hospital
,
on
=
'service_id'
,
how
=
'left'
)
df
=
df
.
drop
(
"service_id"
,
axis
=
1
)
print
(
df
.
count
())
print
(
"before"
)
print
(
df
.
shape
)
df
=
df
.
drop_duplicates
()
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"clevel2_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list
"
])
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids
"
])
print
(
"after"
)
print
(
df
.
shape
)
app_list_number
,
app_list_map
=
multi_hot
(
df
,
"app_list"
,
1
)
level2_number
,
level2_map
=
multi_hot
(
df
,
"clevel2_id"
,
1
+
app_list_number
)
# df["app_list"] = df["app_list"].fillna("lost_na")
# app_list_value = [i.split(",") for i in df["app_list"].unique()]
# app_list_unique = []
# for i in app_list_value:
# app_list_unique.extend(i)
# app_list_unique = list(set(app_list_unique))
# app_list_map = dict(zip(app_list_unique, list(range(1, len(app_list_unique) + 1))))
# df["app_list"] = df["app_list"].apply(app_list_func,args=(app_list_map,))
app_list_number
,
app_list_map
=
multi_hot
(
df
,
"app_list"
,
2
)
level2_number
,
level2_map
=
multi_hot
(
df
,
"clevel2_id"
,
2
+
app_list_number
)
level3_number
,
level3_map
=
multi_hot
(
df
,
"level3_ids"
,
2
+
app_list_number
+
level2_number
)
unique_values
=
[]
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
]
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
for
i
in
features
:
df
[
i
]
=
df
[
i
]
.
astype
(
"str"
)
df
[
i
]
=
df
[
i
]
.
fillna
(
"lost"
)
...
...
@@ -85,14 +105,16 @@ def get_data():
df
[
i
]
=
df
[
i
]
+
i
unique_values
.
extend
(
list
(
df
[
i
]
.
unique
()))
temp
=
list
(
range
(
1
+
app_list_number
+
level2_number
,
1
+
app_list_number
+
level2_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
temp
=
list
(
range
(
2
+
app_list_number
+
level2_number
+
level3_number
,
2
+
app_list_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
train
=
df
[
df
[
"stat_date"
]
!=
validate_date
+
"stat_date"
]
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
train
=
df
[
df
[
"stat_date"
]
!=
validate_date
+
"stat_date"
]
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
for
i
in
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
]:
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]:
train
[
i
]
=
train
[
i
]
.
map
(
value_map
)
test
[
i
]
=
test
[
i
]
.
map
(
value_map
)
...
...
@@ -101,10 +123,10 @@ def get_data():
print
(
"test shape"
)
print
(
test
.
shape
)
write_csv
(
train
,
"tr"
,
100000
)
write_csv
(
test
,
"va"
,
80000
)
write_csv
(
train
,
"tr"
,
100000
)
write_csv
(
test
,
"va"
,
80000
)
return
validate_date
,
value_map
,
app_list_map
,
level2
_map
return
validate_date
,
value_map
,
app_list_map
,
level2_map
,
level3
_map
def
app_list_func
(
x
,
l
):
...
...
@@ -129,10 +151,11 @@ def write_csv(df,name,n):
temp
.
to_csv
(
path
+
name
+
"/{}_{}.csv"
.
format
(
name
,
i
),
index
=
False
)
def
get_predict
(
date
,
value_map
,
app_list_map
,
level2_map
):
def
get_predict
(
date
,
value_map
,
app_list_map
,
level2_map
,
level3_map
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,dl.app_list "
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,feat.level2 "
\
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
...
...
@@ -140,22 +163,39 @@ def get_predict(date,value_map,app_list_map,level2_map):
"left join diary_feat feat on e.cid_id = feat.diary_id"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"label"
,
3
:
"ucity_id"
,
4
:
"clevel2_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"cid_id"
,
12
:
"time"
,
13
:
"app_list"
})
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"cid_id"
,
12
:
"time"
,
13
:
"app_list"
,
14
:
"hospital_id"
,
15
:
"level3_ids"
,
16
:
"level2"
})
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time "
\
"from train_Knowledge_network_data"
knowledge
=
con_sql
(
db
,
sql
)
knowledge
=
knowledge
.
rename
(
columns
=
{
0
:
"level2"
,
1
:
"method"
,
2
:
"min"
,
3
:
"max"
,
4
:
"treatment_time"
,
5
:
"maintain_time"
,
6
:
"recover_time"
})
knowledge
[
"level2"
]
=
knowledge
[
"level2"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
knowledge
,
on
=
'level2'
,
how
=
'left'
)
df
=
df
.
drop
(
"level2"
,
axis
=
1
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"clevel2_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
df
[
"stat_date"
]
=
date
print
(
df
.
head
(
6
))
df
[
"app_list"
]
=
df
[
"app_list"
]
.
fillna
(
"lost_na"
)
df
[
"app_list"
]
=
df
[
"app_list"
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,))
df
[
"app_list"
]
=
df
[
"app_list"
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,))
df
[
"clevel2_id"
]
=
df
[
"clevel2_id"
]
.
fillna
(
"lost_na"
)
df
[
"clevel2_id"
]
=
df
[
"clevel2_id"
]
.
apply
(
app_list_func
,
args
=
(
level2_map
,))
df
[
"level3_ids"
]
=
df
[
"level3_ids"
]
.
fillna
(
"lost_na"
)
df
[
"level3_ids"
]
=
df
[
"level3_ids"
]
.
apply
(
app_list_func
,
args
=
(
level3_map
,))
# print("predict shape")
# print(df.shape)
df
[
"uid"
]
=
df
[
"device_id"
]
df
[
"city"
]
=
df
[
"ucity_id"
]
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
]
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
for
i
in
features
:
df
[
i
]
=
df
[
i
]
.
astype
(
"str"
)
df
[
i
]
=
df
[
i
]
.
fillna
(
"lost"
)
...
...
@@ -167,7 +207,8 @@ def get_predict(date,value_map,app_list_map,level2_map):
nearby_pre
=
nearby_pre
.
drop
(
"label"
,
axis
=
1
)
for
i
in
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
]:
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]:
native_pre
[
i
]
=
native_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
native_pre
[
i
]
=
native_pre
[
i
]
.
fillna
(
0
)
...
...
@@ -176,23 +217,23 @@ def get_predict(date,value_map,app_list_map,level2_map):
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
fillna
(
0
)
print
(
"native"
)
print
(
native_pre
.
shape
)
native_pre
[[
"uid"
,
"city"
,
"cid_id"
]]
.
to_csv
(
path
+
"native.csv"
,
index
=
False
)
write_csv
(
native_pre
,
"native"
,
200000
)
native_pre
[[
"uid"
,
"city"
,
"cid_id"
]]
.
to_csv
(
path
+
"native.csv"
,
index
=
False
)
write_csv
(
native_pre
,
"native"
,
200000
)
print
(
"nearby"
)
print
(
nearby_pre
.
shape
)
nearby_pre
[[
"uid"
,
"city"
,
"cid_id"
]]
.
to_csv
(
path
+
"nearby.csv"
,
index
=
False
)
nearby_pre
[[
"uid"
,
"city"
,
"cid_id"
]]
.
to_csv
(
path
+
"nearby.csv"
,
index
=
False
)
write_csv
(
nearby_pre
,
"nearby"
,
160000
)
if
__name__
==
'__main__'
:
train_data_set
=
"esmm_train_data"
path
=
"/data/esmm/"
date
,
value
,
app_list
,
level2
=
get_data
()
get_predict
(
date
,
value
,
app_list
,
level2
)
date
,
value
,
app_list
,
level2
,
level3
=
get_data
()
get_predict
(
date
,
value
,
app_list
,
level2
,
level3
)
eda/esmm/Model_pipline/submit.sh
View file @
5f70f44f
...
...
@@ -32,15 +32,15 @@ rm ${DATA_PATH}/nearby/nearby_*
echo
"train..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
--task_type
=
train
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
15
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
--task_type
=
train
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/native_infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
15
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/native_infer.log
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/nearby_infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
15
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/nearby_infer.log
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_database.py
>
${
DATA_PATH
}
/insert_database.log
eda/esmm/Model_pipline/to_tfrecord.py
View file @
5f70f44f
...
...
@@ -21,6 +21,7 @@ tf.app.flags.DEFINE_string("input_dir", "./", "input dir")
tf
.
app
.
flags
.
DEFINE_string
(
"output_dir"
,
"./"
,
"output dir"
)
tf
.
app
.
flags
.
DEFINE_integer
(
"threads"
,
16
,
"threads num"
)
def
gen_tfrecords
(
in_file
):
basename
=
os
.
path
.
basename
(
in_file
)
+
".tfrecord"
out_file
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
basename
)
...
...
@@ -29,18 +30,21 @@ def gen_tfrecords(in_file):
for
i
in
range
(
df
.
shape
[
0
]):
feats
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
]
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
id
=
np
.
array
([])
for
j
in
feats
:
id
=
np
.
append
(
id
,
df
[
j
][
i
])
app_list
=
np
.
array
(
str
(
df
[
"app_list"
][
i
])
.
split
(
","
))
level2_list
=
np
.
array
(
str
(
df
[
"clevel2_id"
][
i
])
.
split
(
","
))
level3_list
=
np
.
array
(
str
(
df
[
"level3_ids"
][
i
])
.
split
(
","
))
features
=
tf
.
train
.
Features
(
feature
=
{
"y"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"y"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"z"
][
i
]])),
"ids"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
id
.
astype
(
np
.
int
))),
"app_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
app_list
.
astype
(
np
.
int
))),
"level2_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level2_list
.
astype
(
np
.
int
)))
"app_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
app_list
.
astype
(
np
.
int
))),
"level2_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level2_list
.
astype
(
np
.
int
))),
"level3_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level3_list
.
astype
(
np
.
int
)))
})
example
=
tf
.
train
.
Example
(
features
=
features
)
...
...
eda/esmm/Model_pipline/train.py
View file @
5f70f44f
...
...
@@ -55,7 +55,8 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"z"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"ids"
:
tf
.
FixedLenFeature
([
FLAGS
.
field_size
],
tf
.
int64
),
"app_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
)
"level2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
...
...
@@ -103,6 +104,7 @@ def model_fn(features, labels, mode, params):
feat_ids
=
features
[
'ids'
]
app_list
=
features
[
'app_list'
]
level2_list
=
features
[
'level2_list'
]
level3_list
=
features
[
'level3_list'
]
if
FLAGS
.
task_type
!=
"infer"
:
y
=
labels
[
'y'
]
...
...
@@ -113,10 +115,11 @@ def model_fn(features, labels, mode, params):
embedding_id
=
tf
.
nn
.
embedding_lookup
(
Feat_Emb
,
feat_ids
)
app_id
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
app_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
level2
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
level2_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
level3
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
level3_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
,
level2
],
axis
=
1
)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
,
level2
,
level3
],
axis
=
1
)
with
tf
.
name_scope
(
"CVR_Task"
):
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment