Commit 5fc6569c authored by 张彦钊's avatar 张彦钊

update test file

parent 0f05cbd8
import pickle
import xlearn as xl
import pandas as pd
import pymysql
from datetime import datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import utils
import warnings
from multiprocessing import Pool
from config import *
import json
from sklearn.preprocessing import MinMaxScaler
import time
from userProfile import get_active_users
import os
def get_video_id():
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='eagle')
cursor = db.cursor()
sql = "select diary_id from feed_diary_boost;"
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
video_id = df[0].values.tolist()
print(video_id[:10])
db.close()
return video_id
# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(x_list, device_id):
data = pd.DataFrame(x_list)
# 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
data = data.rename(columns={0: "cid"})
data["device_id"] = device_id
now = datetime.now()
data["hour"] = now.hour
data["minute"] = now.minute
data.loc[data["hour"] == 0, ["hour"]] = 24
data.loc[data["minute"] == 0, ["minute"]] = 60
data["hour"] = data["hour"].astype("category")
data["minute"] = data["minute"].astype("category")
# 虽然预测y,但ffm转化需要y,并不影响预测结果
data["y"] = 0
# print("done 特征工程")
return data
# 把ffm.pkl load进来,将上面的表转化为ffm格式
def transform_ffm_format(df,queue_name):
with open(DIRECTORY_PATH + "ffm.pkl", "rb") as f:
ffm_format_pandas = pickle.load(f)
data = ffm_format_pandas.native_transform(df)
predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_city[0], queue_name)
data.to_csv(predict_file_name, index=False, header=None)
# print("done ffm")
return predict_file_name
# 将模型加载,预测
def predict(queue_name, name_dict):
data = feature_en(name_dict[queue_name][0], device_city[0])
data_file_path = transform_ffm_format(data,queue_name)
ffm_model = xl.create_ffm()
ffm_model.setTest(data_file_path)
ffm_model.setSigmoid()
ffm_model.predict(DIRECTORY_PATH + "model.out",
DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_city[0], queue_name))
return save_result(queue_name, name_dict)
def save_result(queue_name, name_dict):
score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_city[0], queue_name), header=None)
# print(score_df)
mm_scaler = MinMaxScaler()
mm_scaler.fit(score_df)
score_df = pd.DataFrame(mm_scaler.transform(score_df))
score_df = score_df.rename(columns={0: "score"})
score_df["cid"] = name_dict[queue_name][0]
# 去掉cid前面的"diary|"
score_df["cid"] = score_df["cid"].apply(lambda x:x[6:])
print("score_df:")
print(score_df.head(1))
print(score_df.shape)
df_temp = pd.DataFrame(name_dict[queue_name][1]).rename(columns={0: "cid"})
df_temp["score"] = 0
df_temp = df_temp.sort_index(axis=1,ascending=False)
df_temp["cid"] = df_temp["cid"].apply(lambda x: x[6:])
print("temp_df:")
print(df_temp.head(1))
print(df_temp.shape)
predict_score_df = score_df.append(df_temp)
print("score_df:")
print(predict_score_df.head(1))
print(predict_score_df.shape)
return merge_score(queue_name, name_dict, predict_score_df)
def merge_score(queue_name, name_dict, predict_score_df):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='zhengxing_test')
cursor = db.cursor()
# 去除diary_id 前面的"diary|"
diary_list = tuple(list(map(lambda x:x[6:],name_dict[queue_name][2])))
sql = "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
cursor.execute(sql)
result = cursor.fetchall()
score_df = pd.DataFrame(list(result)).rename(columns = {0:"score",1:"cid"})
print("日记打分表")
print(score_df.head(1))
db.close()
return update_dairy_queue(score_df,predict_score_df)
def update_dairy_queue(score_df,predict_score_df):
diary_id = score_df["cid"].values.tolist()
video_id = []
x = 1
while x < len(diary_id):
video_id.append(diary_id[x])
x += 5
if len(video_id)>0:
not_video = list(set(diary_id) - set(video_id))
# 为了相加时,cid能够匹配,先把cid变成索引,相加后,再把cid恢复成列
not_video_df = score_df.loc[score_df["cid"].isin(not_video)].reset_index(["cid"])
not_video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(not_video)].reset_index(["cid"])
not_video_df["score"]=not_video_df["score"]+not_video_predict_df["score"]
not_video_df = not_video_df.reset_index().sort_values(by="score", ascending=False)
video_df = score_df.loc[score_df["cid"].isin(video_id)].reset_index(["cid"])
video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(video_id)].reset_index(["cid"])
video_df["score"] = video_df["score"] + video_predict_df["score"]
video_df = video_df.reset_index().sort_values(by="score", ascending=False)
not_video_id = not_video_df["cid"].values.tolist()
video_id = video_df["cid"].values.tolist()
diary_id = not_video_id
i = 1
for j in video_id:
diary_id.insert(i, j)
# TODO 下面的3是测试用的,如果上线后,把3改成5
i += 3
return diary_id
# 如果没有视频日记
else:
score_df = score_df.reset_index(["cid"])
predict_score_df = predict_score_df.reset_index(["cid"])
score_df["score"]=score_df["score"]+predict_score_df["score"]
score_df = score_df.sort_values(by="score", ascending=False)
return score_df["cid"].values.tolist()
def update_sql_dairy_queue(queue_name, diary_id,device_city):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
print("写入前")
print(diary_id)
sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
(queue_name, diary_id, device_city[0],device_city[1])
cursor.execute(sql)
db.close()
print("成功写入diaryid")
# 更新前获取最新的native_queue
def get_native_queue(device_id,city_id):
db = pymysql.connect(host='rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com', port=3306, user='doris',
passwd='o5gbA27hXHHm', db='doris_prod')
cursor = db.cursor()
sql = "select native_queue from device_diary_queue where device_id = '{}' and city_id = '{}';".format(device_id,city_id)
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
if not df.empty:
native_queue = df.loc[0,0].split(",")
native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
db.close()
# print("成功获取native_queue")
return native_queue
else:
return None
def multi_update(queue_name, name_dict, native_queue):
if name_dict[queue_name] != []:
diary_id = predict(queue_name, name_dict)
if get_native_queue(device_city[0], device_city[1]) == native_queue:
update_sql_dairy_queue(queue_name, diary_id,device_city)
print("更新结束")
else:
print("不需要更新日记队列")
def get_queue(device_id, city_id):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
sql = "select native_queue,nearby_queue,nation_queue,megacity_queue from device_diary_queue " \
"where device_id = '{}' and city = '{}';".format(device_id, city_id)
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
if not df.empty:
df = df.rename(columns={0: "native_queue", 1: "nearby_queue", 2: "nation_queue", 3: "megacity_queue"})
native_queue = df.loc[0, "native_queue"].split(",")
native_queue = list(map(lambda x: "diary|" + str(x), native_queue))
nearby_queue = df.loc[0, "nearby_queue"].split(",")
nearby_queue = list(map(lambda x: "diary|" + str(x), nearby_queue))
nation_queue = df.loc[0, "nation_queue"].split(",")
nation_queue = list(map(lambda x: "diary|" + str(x), nation_queue))
megacity_queue = df.loc[0, "megacity_queue"].split(",")
megacity_queue = list(map(lambda x: "diary|" + str(x), megacity_queue))
db.close()
return True, native_queue, nearby_queue, nation_queue, megacity_queue
else:
print("该用户对应的日记队列为空")
return False, [], [], [], []
def user_update(device_id,city_id):
exist,native_queue, nearby_queue, nation_queue, megacity_queue = get_queue(device_id,city_id)
if exist:
native_queue_predcit = list(set(native_queue) & set(data_set_cid))
nearby_queue_predict = list(set(nearby_queue) & set(data_set_cid))
nation_queue_predict = list(set(nation_queue) & set(data_set_cid))
megacity_queue_predict = list(set(megacity_queue) & set(data_set_cid))
native_queue_not_predcit = list(set(native_queue) - set(data_set_cid))
nearby_queue_not_predict = list(set(nearby_queue) - set(data_set_cid))
nation_queue_not_predict = list(set(nation_queue) - set(data_set_cid))
megacity_queue_not_predict = list(set(megacity_queue) - set(data_set_cid))
name_dict = {"native_queue":[native_queue_predcit,native_queue_not_predcit,native_queue],
"nearby_queue":[nearby_queue_predict,nearby_queue_not_predict,nearby_queue],
"nation_queue":[nation_queue_predict, nation_queue_not_predict,nation_queue],
"megacity_queue":[megacity_queue_predict,megacity_queue_not_predict,megacity_queue]}
#TODO 上线后把下面是数字1改成4
pool = Pool(1)
for queue_name in name_dict.keys():
pool.apply_async(multi_update, (queue_name, name_dict, native_queue,))
pool.close()
pool.join()
else:
print("日记队列为空")
if __name__ == "__main__":
# while True:
# TODO 部署到线上,改一下get_active_users,现在不返回cityid,改成city_id和deviceid 组成的df
# empty,df = get_active_users()
# if empty:
# for eachFile in os.listdir("/tmp"):
# if "xlearn" in eachFile:
# os.remove("/tmp" + "/" + eachFile)
# time.sleep(58)
# else:
# old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
# device_id_list = df["device_id"].values.tolist()
# # 求活跃用户和老用户的交集,也就是只预测老用户
# predict_list = list(set(device_id_list) & set(old_device_id_list))
#
# # 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
# # predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
# df = df.loc[df["device_id"].isin(predict_list)]
# device_list = df["device_id"].values.tolist()
# city_list = df["city_id"].values.tolist()
# device_city_list = list(zip(device_list,city_list))
# start = time.time()
warnings.filterwarnings("ignore")
data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
device_city_list = [("356156075348110","tainjin")]
if device_city_list != []:
for device_city in device_city_list:
user_update(device_city[0], device_city[1])
else:
print("该列表是新用户,不需要预测")
end = time.time()
# # TODO 上线后把预测用户改成多进程预测
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment