Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
5fc6569c
Commit
5fc6569c
authored
Aug 24, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update test file
parent
0f05cbd8
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
317 additions
and
0 deletions
+317
-0
diary2.0.py
local/diary2.0.py
+317
-0
No files found.
local/diary2.0.py
0 → 100644
View file @
5fc6569c
import
pickle
import
xlearn
as
xl
import
pandas
as
pd
import
pymysql
from
datetime
import
datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import
utils
import
warnings
from
multiprocessing
import
Pool
from
config
import
*
import
json
from
sklearn.preprocessing
import
MinMaxScaler
import
time
from
userProfile
import
get_active_users
import
os
def
get_video_id
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
cursor
=
db
.
cursor
()
sql
=
"select diary_id from feed_diary_boost;"
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
video_id
=
df
[
0
]
.
values
.
tolist
()
print
(
video_id
[:
10
])
db
.
close
()
return
video_id
# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def
feature_en
(
x_list
,
device_id
):
data
=
pd
.
DataFrame
(
x_list
)
# 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
data
=
data
.
rename
(
columns
=
{
0
:
"cid"
})
data
[
"device_id"
]
=
device_id
now
=
datetime
.
now
()
data
[
"hour"
]
=
now
.
hour
data
[
"minute"
]
=
now
.
minute
data
.
loc
[
data
[
"hour"
]
==
0
,
[
"hour"
]]
=
24
data
.
loc
[
data
[
"minute"
]
==
0
,
[
"minute"
]]
=
60
data
[
"hour"
]
=
data
[
"hour"
]
.
astype
(
"category"
)
data
[
"minute"
]
=
data
[
"minute"
]
.
astype
(
"category"
)
# 虽然预测y,但ffm转化需要y,并不影响预测结果
data
[
"y"
]
=
0
# print("done 特征工程")
return
data
# 把ffm.pkl load进来,将上面的表转化为ffm格式
def
transform_ffm_format
(
df
,
queue_name
):
with
open
(
DIRECTORY_PATH
+
"ffm.pkl"
,
"rb"
)
as
f
:
ffm_format_pandas
=
pickle
.
load
(
f
)
data
=
ffm_format_pandas
.
native_transform
(
df
)
predict_file_name
=
DIRECTORY_PATH
+
"result/{0}_{1}.csv"
.
format
(
device_city
[
0
],
queue_name
)
data
.
to_csv
(
predict_file_name
,
index
=
False
,
header
=
None
)
# print("done ffm")
return
predict_file_name
# 将模型加载,预测
def
predict
(
queue_name
,
name_dict
):
data
=
feature_en
(
name_dict
[
queue_name
][
0
],
device_city
[
0
])
data_file_path
=
transform_ffm_format
(
data
,
queue_name
)
ffm_model
=
xl
.
create_ffm
()
ffm_model
.
setTest
(
data_file_path
)
ffm_model
.
setSigmoid
()
ffm_model
.
predict
(
DIRECTORY_PATH
+
"model.out"
,
DIRECTORY_PATH
+
"result/output{0}_{1}.csv"
.
format
(
device_city
[
0
],
queue_name
))
return
save_result
(
queue_name
,
name_dict
)
def
save_result
(
queue_name
,
name_dict
):
score_df
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"result/output{0}_{1}.csv"
.
format
(
device_city
[
0
],
queue_name
),
header
=
None
)
# print(score_df)
mm_scaler
=
MinMaxScaler
()
mm_scaler
.
fit
(
score_df
)
score_df
=
pd
.
DataFrame
(
mm_scaler
.
transform
(
score_df
))
score_df
=
score_df
.
rename
(
columns
=
{
0
:
"score"
})
score_df
[
"cid"
]
=
name_dict
[
queue_name
][
0
]
# 去掉cid前面的"diary|"
score_df
[
"cid"
]
=
score_df
[
"cid"
]
.
apply
(
lambda
x
:
x
[
6
:])
print
(
"score_df:"
)
print
(
score_df
.
head
(
1
))
print
(
score_df
.
shape
)
df_temp
=
pd
.
DataFrame
(
name_dict
[
queue_name
][
1
])
.
rename
(
columns
=
{
0
:
"cid"
})
df_temp
[
"score"
]
=
0
df_temp
=
df_temp
.
sort_index
(
axis
=
1
,
ascending
=
False
)
df_temp
[
"cid"
]
=
df_temp
[
"cid"
]
.
apply
(
lambda
x
:
x
[
6
:])
print
(
"temp_df:"
)
print
(
df_temp
.
head
(
1
))
print
(
df_temp
.
shape
)
predict_score_df
=
score_df
.
append
(
df_temp
)
print
(
"score_df:"
)
print
(
predict_score_df
.
head
(
1
))
print
(
predict_score_df
.
shape
)
return
merge_score
(
queue_name
,
name_dict
,
predict_score_df
)
def
merge_score
(
queue_name
,
name_dict
,
predict_score_df
):
db
=
pymysql
.
connect
(
host
=
'rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'workwork'
,
db
=
'zhengxing_test'
)
cursor
=
db
.
cursor
()
# 去除diary_id 前面的"diary|"
diary_list
=
tuple
(
list
(
map
(
lambda
x
:
x
[
6
:],
name_dict
[
queue_name
][
2
])))
sql
=
"select score,diary_id from biz_feed_diary_score where diary_id in {};"
.
format
(
diary_list
)
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
score_df
=
pd
.
DataFrame
(
list
(
result
))
.
rename
(
columns
=
{
0
:
"score"
,
1
:
"cid"
})
print
(
"日记打分表"
)
print
(
score_df
.
head
(
1
))
db
.
close
()
return
update_dairy_queue
(
score_df
,
predict_score_df
)
def
update_dairy_queue
(
score_df
,
predict_score_df
):
diary_id
=
score_df
[
"cid"
]
.
values
.
tolist
()
video_id
=
[]
x
=
1
while
x
<
len
(
diary_id
):
video_id
.
append
(
diary_id
[
x
])
x
+=
5
if
len
(
video_id
)
>
0
:
not_video
=
list
(
set
(
diary_id
)
-
set
(
video_id
))
# 为了相加时,cid能够匹配,先把cid变成索引,相加后,再把cid恢复成列
not_video_df
=
score_df
.
loc
[
score_df
[
"cid"
]
.
isin
(
not_video
)]
.
reset_index
([
"cid"
])
not_video_predict_df
=
predict_score_df
.
loc
[
predict_score_df
[
"cid"
]
.
isin
(
not_video
)]
.
reset_index
([
"cid"
])
not_video_df
[
"score"
]
=
not_video_df
[
"score"
]
+
not_video_predict_df
[
"score"
]
not_video_df
=
not_video_df
.
reset_index
()
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
video_df
=
score_df
.
loc
[
score_df
[
"cid"
]
.
isin
(
video_id
)]
.
reset_index
([
"cid"
])
video_predict_df
=
predict_score_df
.
loc
[
predict_score_df
[
"cid"
]
.
isin
(
video_id
)]
.
reset_index
([
"cid"
])
video_df
[
"score"
]
=
video_df
[
"score"
]
+
video_predict_df
[
"score"
]
video_df
=
video_df
.
reset_index
()
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
not_video_id
=
not_video_df
[
"cid"
]
.
values
.
tolist
()
video_id
=
video_df
[
"cid"
]
.
values
.
tolist
()
diary_id
=
not_video_id
i
=
1
for
j
in
video_id
:
diary_id
.
insert
(
i
,
j
)
# TODO 下面的3是测试用的,如果上线后,把3改成5
i
+=
3
return
diary_id
# 如果没有视频日记
else
:
score_df
=
score_df
.
reset_index
([
"cid"
])
predict_score_df
=
predict_score_df
.
reset_index
([
"cid"
])
score_df
[
"score"
]
=
score_df
[
"score"
]
+
predict_score_df
[
"score"
]
score_df
=
score_df
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
return
score_df
[
"cid"
]
.
values
.
tolist
()
def
update_sql_dairy_queue
(
queue_name
,
diary_id
,
device_city
):
db
=
pymysql
.
connect
(
host
=
'rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'workwork'
,
db
=
'doris_test'
)
cursor
=
db
.
cursor
()
print
(
"写入前"
)
print
(
diary_id
)
sql
=
"update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'"
.
format
\
(
queue_name
,
diary_id
,
device_city
[
0
],
device_city
[
1
])
cursor
.
execute
(
sql
)
db
.
close
()
print
(
"成功写入diaryid"
)
# 更新前获取最新的native_queue
def
get_native_queue
(
device_id
,
city_id
):
db
=
pymysql
.
connect
(
host
=
'rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'doris'
,
passwd
=
'o5gbA27hXHHm'
,
db
=
'doris_prod'
)
cursor
=
db
.
cursor
()
sql
=
"select native_queue from device_diary_queue where device_id = '{}' and city_id = '{}';"
.
format
(
device_id
,
city_id
)
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
if
not
df
.
empty
:
native_queue
=
df
.
loc
[
0
,
0
]
.
split
(
","
)
native_queue
=
list
(
map
(
lambda
x
:
"diary|"
+
str
(
x
),
native_queue
))
db
.
close
()
# print("成功获取native_queue")
return
native_queue
else
:
return
None
def
multi_update
(
queue_name
,
name_dict
,
native_queue
):
if
name_dict
[
queue_name
]
!=
[]:
diary_id
=
predict
(
queue_name
,
name_dict
)
if
get_native_queue
(
device_city
[
0
],
device_city
[
1
])
==
native_queue
:
update_sql_dairy_queue
(
queue_name
,
diary_id
,
device_city
)
print
(
"更新结束"
)
else
:
print
(
"不需要更新日记队列"
)
def
get_queue
(
device_id
,
city_id
):
db
=
pymysql
.
connect
(
host
=
'rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'workwork'
,
db
=
'doris_test'
)
cursor
=
db
.
cursor
()
sql
=
"select native_queue,nearby_queue,nation_queue,megacity_queue from device_diary_queue "
\
"where device_id = '{}' and city = '{}';"
.
format
(
device_id
,
city_id
)
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
if
not
df
.
empty
:
df
=
df
.
rename
(
columns
=
{
0
:
"native_queue"
,
1
:
"nearby_queue"
,
2
:
"nation_queue"
,
3
:
"megacity_queue"
})
native_queue
=
df
.
loc
[
0
,
"native_queue"
]
.
split
(
","
)
native_queue
=
list
(
map
(
lambda
x
:
"diary|"
+
str
(
x
),
native_queue
))
nearby_queue
=
df
.
loc
[
0
,
"nearby_queue"
]
.
split
(
","
)
nearby_queue
=
list
(
map
(
lambda
x
:
"diary|"
+
str
(
x
),
nearby_queue
))
nation_queue
=
df
.
loc
[
0
,
"nation_queue"
]
.
split
(
","
)
nation_queue
=
list
(
map
(
lambda
x
:
"diary|"
+
str
(
x
),
nation_queue
))
megacity_queue
=
df
.
loc
[
0
,
"megacity_queue"
]
.
split
(
","
)
megacity_queue
=
list
(
map
(
lambda
x
:
"diary|"
+
str
(
x
),
megacity_queue
))
db
.
close
()
return
True
,
native_queue
,
nearby_queue
,
nation_queue
,
megacity_queue
else
:
print
(
"该用户对应的日记队列为空"
)
return
False
,
[],
[],
[],
[]
def
user_update
(
device_id
,
city_id
):
exist
,
native_queue
,
nearby_queue
,
nation_queue
,
megacity_queue
=
get_queue
(
device_id
,
city_id
)
if
exist
:
native_queue_predcit
=
list
(
set
(
native_queue
)
&
set
(
data_set_cid
))
nearby_queue_predict
=
list
(
set
(
nearby_queue
)
&
set
(
data_set_cid
))
nation_queue_predict
=
list
(
set
(
nation_queue
)
&
set
(
data_set_cid
))
megacity_queue_predict
=
list
(
set
(
megacity_queue
)
&
set
(
data_set_cid
))
native_queue_not_predcit
=
list
(
set
(
native_queue
)
-
set
(
data_set_cid
))
nearby_queue_not_predict
=
list
(
set
(
nearby_queue
)
-
set
(
data_set_cid
))
nation_queue_not_predict
=
list
(
set
(
nation_queue
)
-
set
(
data_set_cid
))
megacity_queue_not_predict
=
list
(
set
(
megacity_queue
)
-
set
(
data_set_cid
))
name_dict
=
{
"native_queue"
:[
native_queue_predcit
,
native_queue_not_predcit
,
native_queue
],
"nearby_queue"
:[
nearby_queue_predict
,
nearby_queue_not_predict
,
nearby_queue
],
"nation_queue"
:[
nation_queue_predict
,
nation_queue_not_predict
,
nation_queue
],
"megacity_queue"
:[
megacity_queue_predict
,
megacity_queue_not_predict
,
megacity_queue
]}
#TODO 上线后把下面是数字1改成4
pool
=
Pool
(
1
)
for
queue_name
in
name_dict
.
keys
():
pool
.
apply_async
(
multi_update
,
(
queue_name
,
name_dict
,
native_queue
,))
pool
.
close
()
pool
.
join
()
else
:
print
(
"日记队列为空"
)
if
__name__
==
"__main__"
:
# while True:
# TODO 部署到线上,改一下get_active_users,现在不返回cityid,改成city_id和deviceid 组成的df
# empty,df = get_active_users()
# if empty:
# for eachFile in os.listdir("/tmp"):
# if "xlearn" in eachFile:
# os.remove("/tmp" + "/" + eachFile)
# time.sleep(58)
# else:
# old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
# device_id_list = df["device_id"].values.tolist()
# # 求活跃用户和老用户的交集,也就是只预测老用户
# predict_list = list(set(device_id_list) & set(old_device_id_list))
#
# # 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
# # predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
# df = df.loc[df["device_id"].isin(predict_list)]
# device_list = df["device_id"].values.tolist()
# city_list = df["city_id"].values.tolist()
# device_city_list = list(zip(device_list,city_list))
# start = time.time()
warnings
.
filterwarnings
(
"ignore"
)
data_set_cid
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"data_set_cid.csv"
)[
"cid"
]
.
values
.
tolist
()
device_city_list
=
[(
"356156075348110"
,
"tainjin"
)]
if
device_city_list
!=
[]:
for
device_city
in
device_city_list
:
user_update
(
device_city
[
0
],
device_city
[
1
])
else
:
print
(
"该列表是新用户,不需要预测"
)
end
=
time
.
time
()
# # TODO 上线后把预测用户改成多进程预测
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment