Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
67f15321
Commit
67f15321
authored
Dec 14, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add user
parent
0b6f3d0a
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
3 deletions
+8
-3
ffm.py
tensnsorflow/ffm.py
+8
-3
No files found.
tensnsorflow/ffm.py
View file @
67f15321
...
@@ -167,12 +167,14 @@ def get_data():
...
@@ -167,12 +167,14 @@ def get_data():
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"device_id"
],
axis
=
1
)
.
fillna
(
0.0
)
df
=
df
.
drop
([
"z"
,
"device_id"
],
axis
=
1
)
.
fillna
(
0.0
)
print
(
df
.
head
(
2
))
print
(
df
.
head
(
2
))
print
(
"fields:{}"
.
format
(
df
.
shape
[
1
]
-
1
))
print
(
"features:{}"
.
format
(
len
(
cid
)))
return
df
,
validate_date
,
ucity_id
,
cid
return
df
,
validate_date
,
ucity_id
,
cid
def
transform
(
a
,
validate_date
):
def
transform
(
a
,
validate_date
):
model
=
multiFFMFormatPandas
()
model
=
multiFFMFormatPandas
()
df
=
model
.
fit_transform
(
a
,
y
=
"y"
,
n
=
160000
,
processes
=
2
2
)
df
=
model
.
fit_transform
(
a
,
y
=
"y"
,
n
=
160000
,
processes
=
2
6
)
df
=
pd
.
DataFrame
(
df
)
df
=
pd
.
DataFrame
(
df
)
df
[
"stat_date"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
0
])
df
[
"stat_date"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
0
])
df
[
"device_id"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
1
])
df
[
"device_id"
]
=
df
[
0
]
.
apply
(
lambda
x
:
x
.
split
(
","
)[
1
])
...
@@ -209,8 +211,13 @@ def get_predict_set(ucity_id, cid,model):
...
@@ -209,8 +211,13 @@ def get_predict_set(ucity_id, cid,model):
df
=
con_sql
(
db
,
sql
)
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
,
26
:
"label"
})
6
:
"clevel1_id"
,
7
:
"ccity_name"
,
26
:
"label"
})
print
(
"before filter:"
)
print
(
df
.
shape
)
df
=
df
[
df
[
"cid_id"
]
.
isin
(
cid
)]
df
=
df
[
df
[
"cid_id"
]
.
isin
(
cid
)]
print
(
"after cid filter:"
)
print
(
df
.
shape
)
df
=
df
[
df
[
"ucity_id"
]
.
isin
(
ucity_id
)]
df
=
df
[
df
[
"ucity_id"
]
.
isin
(
ucity_id
)]
print
(
"after ucity filter:"
)
print
(
df
.
shape
)
print
(
df
.
shape
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
...
@@ -221,8 +228,6 @@ def get_predict_set(ucity_id, cid,model):
...
@@ -221,8 +228,6 @@ def get_predict_set(ucity_id, cid,model):
[
df
[
"device_id"
]
.
values
.
tolist
(),
df
[
"ucity_id"
]
.
values
.
tolist
(),
df
[
"cid_id"
]
.
values
.
tolist
(),
[
df
[
"device_id"
]
.
values
.
tolist
(),
df
[
"ucity_id"
]
.
values
.
tolist
(),
df
[
"cid_id"
]
.
values
.
tolist
(),
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
df
=
df
.
drop
([
"z"
,
"label"
,
"device_id"
],
axis
=
1
)
.
fillna
(
0.0
)
df
=
df
.
drop
([
"z"
,
"label"
,
"device_id"
],
axis
=
1
)
.
fillna
(
0.0
)
print
(
"df ok"
)
print
(
df
.
shape
)
print
(
df
.
head
(
2
))
print
(
df
.
head
(
2
))
df
=
model
.
transform
(
df
,
n
=
160000
,
processes
=
22
)
df
=
model
.
transform
(
df
,
n
=
160000
,
processes
=
22
)
df
=
pd
.
DataFrame
(
df
)
df
=
pd
.
DataFrame
(
df
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment