Commit 68b587af authored by 张彦钊's avatar 张彦钊

change test file

parent c84127fc
...@@ -73,7 +73,7 @@ def main(): ...@@ -73,7 +73,7 @@ def main():
df_merge = df_all['device_id'] + df_all['city_id'] df_merge = df_all['device_id'] + df_all['city_id']
df_merge_str = (str(list(df_merge.values))).strip('[]') df_merge_str = (str(list(df_merge.values))).strip('[]')
try:
delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str) delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str)
con = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test',cursorclass=pymysql.cursors.DictCursor) con = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test',cursorclass=pymysql.cursors.DictCursor)
cur = con.cursor() cur = con.cursor()
...@@ -82,8 +82,17 @@ def main(): ...@@ -82,8 +82,17 @@ def main():
print("delete done") print("delete done")
engine = create_engine(str(r"mysql+pymysql://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db)) engine = create_engine(str(r"mysql+pymysql://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db))
df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False,chunksize=8000) df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False,chunksize=8000)
except Exception as e: # try:
print(e) # delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str)
# con = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test',cursorclass=pymysql.cursors.DictCursor)
# cur = con.cursor()
# cur.execute(delete_str)
# con.commit()
# print("delete done")
# engine = create_engine(str(r"mysql+pymysql://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db))
# df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False,chunksize=8000)
# except Exception as e:
# print(e)
print("done") print("done")
......
...@@ -3,13 +3,13 @@ ...@@ -3,13 +3,13 @@
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import pandas as pd
import os import os
from hdfs import * import glob
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
from multiprocessing import Pool as ThreadPool from multiprocessing import Pool as ThreadPool
from hdfs import InsecureClient
from hdfs.ext.dataframe import read_dataframe
flags = tf.app.flags flags = tf.app.flags
FLAGS = flags.FLAGS FLAGS = flags.FLAGS
...@@ -24,26 +24,40 @@ def gen_tfrecords(in_file): ...@@ -24,26 +24,40 @@ def gen_tfrecords(in_file):
basename = os.path.basename(in_file) + ".tfrecord" basename = os.path.basename(in_file) + ".tfrecord"
out_file = os.path.join(FLAGS.output_dir, basename) out_file = os.path.join(FLAGS.output_dir, basename)
tfrecord_out = tf.python_io.TFRecordWriter(out_file) tfrecord_out = tf.python_io.TFRecordWriter(out_file)
client_temp = InsecureClient('http://nvwa01:50070') df = pd.read_csv(in_file)
df = read_dataframe(client_temp,in_file)
for i in range(df.shape[0]): for i in range(df.shape[0]):
feats = ["ucity_id", "ccity_name", "device_type", "manufacturer", feats = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "hospital_id", "channel", "top", "time", "stat_date", "hospital_id",
"treatment_method", "price_min", "price_max", "treatment_time", "maintain_time", "recover_time"] "method", "min", "max", "treatment_time", "maintain_time", "recover_time"]
id = np.array([]) id = np.array([])
for j in feats: for j in feats:
id = np.append(id,df[j][i]) id = np.append(id,df[j][i])
app_list = np.array(str(df["app_list"][i]).split(",")) app_list = np.array(str(df["app_list"][i]).split(","))
level2_list = np.array(str(df["level2_ids"][i]).split(",")) level2_list = np.array(str(df["clevel2_id"][i]).split(","))
level3_list = np.array(str(df["level3_ids"][i]).split(",")) level3_list = np.array(str(df["level3_ids"][i]).split(","))
tag1_list = np.array(str(df["tag1"][i]).split(","))
tag2_list = np.array(str(df["tag2"][i]).split(","))
tag3_list = np.array(str(df["tag3"][i]).split(","))
tag4_list = np.array(str(df["tag4"][i]).split(","))
tag5_list = np.array(str(df["tag5"][i]).split(","))
tag6_list = np.array(str(df["tag6"][i]).split(","))
tag7_list = np.array(str(df["tag7"][i]).split(","))
features = tf.train.Features(feature={ features = tf.train.Features(feature={
"y": tf.train.Feature(float_list=tf.train.FloatList(value=[df["y"][i]])), "y": tf.train.Feature(float_list=tf.train.FloatList(value=[df["y"][i]])),
"z": tf.train.Feature(float_list=tf.train.FloatList(value=[df["z"][i]])), "z": tf.train.Feature(float_list=tf.train.FloatList(value=[df["z"][i]])),
"ids": tf.train.Feature(int64_list=tf.train.Int64List(value=id.astype(np.int))), "ids": tf.train.Feature(int64_list=tf.train.Int64List(value=id.astype(np.int))),
"app_list": tf.train.Feature(int64_list=tf.train.Int64List(value=app_list.astype(np.int))), "app_list": tf.train.Feature(int64_list=tf.train.Int64List(value=app_list.astype(np.int))),
"level2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level2_list.astype(np.int))), "level2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level2_list.astype(np.int))),
"level3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level3_list.astype(np.int))) "level3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level3_list.astype(np.int))),
"tag1_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag1_list.astype(np.int))),
"tag2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag2_list.astype(np.int))),
"tag3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag3_list.astype(np.int))),
"tag4_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag4_list.astype(np.int))),
"tag5_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag5_list.astype(np.int))),
"tag6_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag6_list.astype(np.int))),
"tag7_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag7_list.astype(np.int)))
}) })
example = tf.train.Example(features = features) example = tf.train.Example(features = features)
...@@ -51,18 +65,10 @@ def gen_tfrecords(in_file): ...@@ -51,18 +65,10 @@ def gen_tfrecords(in_file):
tfrecord_out.write(serialized) tfrecord_out.write(serialized)
tfrecord_out.close() tfrecord_out.close()
def main(_): def main(_):
client = Client("http://nvwa01:50070")
file_list = []
for root, dir, files in client.walk(FLAGS.input_dir):
for file in files:
if file[-5:] == ".avro":
file_list.append(FLAGS.input_dir+file)
if not os.path.exists(FLAGS.output_dir): if not os.path.exists(FLAGS.output_dir):
os.mkdir(FLAGS.output_dir) os.mkdir(FLAGS.output_dir)
file_list = glob.glob(os.path.join(FLAGS.input_dir, "*.csv"))
print("total files: %d" % len(file_list)) print("total files: %d" % len(file_list))
pool = ThreadPool(FLAGS.threads) # Sets the pool size pool = ThreadPool(FLAGS.threads) # Sets the pool size
...@@ -74,4 +80,3 @@ def main(_): ...@@ -74,4 +80,3 @@ def main(_):
if __name__ == "__main__": if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO) tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run() tf.app.run()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment