Commit 6b325b05 authored by 张彦钊's avatar 张彦钊

change test file

parent dc5d565f
...@@ -2,114 +2,30 @@ import pandas as pd ...@@ -2,114 +2,30 @@ import pandas as pd
import pymysql import pymysql
from datetime import datetime from datetime import datetime
from datetime import timedelta from datetime import timedelta
import pickle
import time
from kafka import KafkaProducer
def get_city(): def on_send_success():
sql = "select distinct city_id from data_feed_exposure where stat_date >= '2018-10-01' order by city_id" print("succeed")
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_prod') return 1
cursor = db.cursor()
print("开始获取")
cursor.execute(sql)
print("成功获取")
result = cursor.fetchall()
db.close()
user = pd.DataFrame(list(result))[0].values.tolist()
print(user)
sql = "select distinct name from api_tag where tag_type = 4" def on_send_error():
db = pymysql.connect(host='rdsfewzdmf0jfjp9un8xj.mysql.rds.aliyuncs.com', port=3306, print("fail")
user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') return 0
cursor = db.cursor()
print("开始获取")
cursor.execute(sql)
print("成功获取")
result = cursor.fetchall()
db.close()
user = pd.DataFrame(list(result))[0].values.tolist()
print(user)
# def get_tail8():
# sql = "select distinct device_id from data_feed_click \
# where stat_date='{}' \
# and cid_type='{}' \
# and device_id regexp '8$';".format(stat_date,cid_type)
# db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
# cursor = db.cursor()
# print("开始获取")
# cursor.execute(sql)
# print("成功获取")
# result = cursor.fetchall()
# db.close()
# user = pd.DataFrame(list(result))[0].values.tolist()
# user = tuple(user)
# print("尾号是8的用户个数")
# print(len(user))
# return user
if __name__ == "__main__":
# def get_ctr(user_tuple): producer = KafkaProducer(
# sql = "select count(device_id) from data_feed_click \ bootstrap_servers=['172.16.44.25:9092'],
# where stat_date='{}' \ key_serializer=lambda k: pickle.dumps(k),
# and cid_type='{}' \ value_serializer=lambda v: pickle.dumps(v))
# and device_id in {}".format(stat_date, cid_type, user_tuple) producer.send(topic = "test_topic", key = "hello", value = "world")\
# db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') .add_callback(on_send_success).add_errback(on_send_error)
# cursor = db.cursor() producer.flush()
# print("开始获取") producer.close()
# cursor.execute(sql)
# click = cursor.fetchall()[0][0]
# print(click)
#
# sql = "select count(device_id) from data_feed_exposure \
# where stat_date='{}' \
# and cid_type='{}' \
# and device_id in {}".format(stat_date, cid_type, user_tuple)
# cursor = db.cursor()
# print("开始获取")
# cursor.execute(sql)
# exp = cursor.fetchall()[0][0]
# db.close()
# print(exp)
# print(click / exp)
# def get_tail6():
# df = pd.read_csv(path+"{}predictTail6Unique.csv".format(stat_date))
# pre_list = tuple(eval(df.loc[0,"list"]))
# print(len(pre_list))
# print(pre_list[:2])
# db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
# sql = "select distinct device_id from data_feed_click \
# where stat_date='{}' \
# and cid_type='{}' \
# and device_id in {}".format(stat_date,cid_type,pre_list)
# cursor = db.cursor()
# print("开始获取")
# cursor.execute(sql)
# print("成功获取")
# result = cursor.fetchall()
# db.close()
# print(pd.DataFrame(list(result)).empty)
# user = pd.DataFrame(list(result))[0].values.tolist()
# user = tuple(user)
# print("用户个数")
# print(len(user))
# return user
if __name__ == "__main__":
get_city()
# path = "/data/models/"
# cid_type = "diary"
# now = datetime.now()
# year = now.year
# month = now.month
# day = now.day
# stat_date = datetime(year, month, day)
# stat_date = (stat_date - timedelta(days=1)).strftime("%Y-%m-%d")
# print(stat_date)
# tail6 = get_tail6()
# get_ctr(tail6)
# tail8 = get_tail8()
# get_ctr(tail8)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment