Commit 6f1e60af authored by 高雅喆's avatar 高雅喆

Merge branch 'master' of git.wanmeizhensuo.com:ML/ffm-baseline

rm 2018 to 201
parents 337a29da ede972bc
from pyspark.sql import SQLContext import pandas as pd
from pyspark.context import SparkContext import pymysql
from pyspark.conf import SparkConf
import datetime import datetime
from pyspark.sql import HiveContext import tensorflow as tf
def get_data(day): def con_sql(db,sql):
sc = SparkContext(conf=SparkConf().setAppName("multi_task")).getOrCreate() cursor = db.cursor()
sc.setLogLevel("WARN") try:
ctx = SQLContext(sc) cursor.execute(sql)
end_date = (datetime.date.today() - datetime.timedelta(days=1)).strftime("%Y-%m-%d") result = cursor.fetchall()
start_date = (datetime.date.today() - datetime.timedelta(days=day)).strftime("%Y-%m-%d") df = pd.DataFrame(list(result))
dbtable = "(select device_id,cid_id,stat_date from data_feed_click " \ except Exception:
"where stat_date >= '{}' and stat_date <= '{}')tmp".format(start_date, end_date) print("发生异常", Exception)
df = pd.DataFrame()
finally:
db.close()
return df
click = ctx.read.format("jdbc").options(url="jdbc:mysql://10.66.157.22:4000/jerry_prod",
driver="com.mysql.jdbc.Driver",
dbtable=dbtable, def get_data():
user="root", db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
password="3SYz54LS9#^9sBvC").load() sql = "select max(stat_date) from esmm_train_data"
click.show(6) validate_date = con_sql(db, sql)[0].values.tolist()[0]
click = click.rdd.map(lambda x:(x[0],x[1],x[2])) print("validate_date:" + validate_date)
device_id = tuple(click.map(lambda x:x[0]).collect()) temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
print(device_id[0:2]) start = (temp - datetime.timedelta(days=30)).strftime("%Y-%m-%d")
dbtable = "(select device_id,cid_id,stat_date from data_feed_exposure " \ print(start)
"where stat_date >= '{}' and stat_date <= '{}' and device_id in {})tmp".format(start_date,end_date,device_id) db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
exp = ctx.read.format("jdbc").options(url="jdbc:mysql://10.66.157.22:4000/jerry_prod", sql = "select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name," \
driver="com.mysql.jdbc.Driver", "u.device_type,u.manufacturer,u.channel,c.top,cid_time.time " \
dbtable=dbtable, "from esmm_train_data e left join user_feature u on e.device_id = u.device_id " \
user="root", "left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id " \
password="3SYz54LS9#^9sBvC").load() "where e.stat_date >= '{}'".format(start)
df = con_sql(db, sql)
exp.show(6) print(df.shape)
exp = exp.rdd.map(lambda x:(x[0],x[1],x[2])).subtract(click).map(lambda x:((x[0],x[1],x[2]),1))\ df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id", 4: "clevel1_id", 5: "ccity_name",
.reduceByKey(lambda x,y:x+y).filter(lambda x:x[1] >= 3).map(lambda x:(x[0][0],x[0][1],x[0][2],0)) 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "time"})
click = click.map(lambda x:(x[0],x[1],x[2],1)) print("esmm data ok")
print(df.head(2))
date = click.map(lambda x:x[2]).collect() df = df.fillna("na")
print(df.count())
def test(): ucity_id = {v:i for i,v in df["ucity_id"].unique()}
sc = SparkContext(conf=SparkConf().setAppName("multi_task")).getOrCreate() clevel1_id = {v:i for i,v in df["clevel1_id"].unique()}
sc.setLogLevel("WARN") ccity_name = {v:i for i,v in df["ccity_name"].unique()}
ctx = SQLContext(sc) device_type = {v:i for i,v in df["device_type"].unique()}
end_date = "2018-09-10" manufacturer = {v:i for i,v in df["manufacturer"].unique()}
start_date = "2018-09-09" channel = {v:i for i,v in df["channel"].unique()}
dbtable = "(select device_id,cid_id,stat_date from data_feed_click " \ top = {v:i for i,v in df["top"].unique()}
"limit 80)tmp".format(start_date) time = {v:i for i,v in df["time"].unique()}
click = ctx.read.format("jdbc").options(url="jdbc:mysql://192.168.15.12:4000/jerry_prod", df["ucity_id"] = df["ucity_id"].map(ucity_id)
driver="com.mysql.jdbc.Driver", df["clevel1_id"] = df["clevel1_id"].map(clevel1_id)
dbtable=dbtable, df["ccity_name"] = df["ccity_name"].map(ccity_name)
user="root", df["device_type"] = df["device_type"].map(device_type)
password="").load() df["manufacturer"] = df["manufacturer"].map(manufacturer)
click.show(6) df["channel"] = df["channel"].map(channel)
click = click.rdd.map(lambda x: (x[0], x[1], x[2])) df["top"] = df["top"].map(top)
df["time"] = df["time"].map(time)
date = click.map(lambda x: x[2]).collect()
cid = click.map(lambda x: x[1]).collect() train = df.loc[df["stat_date"] == validate_date]
click = click.map(lambda x:str(1)+" "+str(cid.index(x[1]))+":"+str(1)+" "+str(date.index(x[2]))+":"+str(1)) test = df.loc[df["stat_date"] != validate_date]
print(click.take(6))
features = ["ucity_id","clevel1_id","ccity_name","device_type","manufacturer","channel","top","time"]
# device_id = tuple(click.map(lambda x: x[0]).collect())
# print(device_id[0:2]) train_values = train[features].values
# dbtable = "(select device_id,cid_id,stat_date from data_feed_exposure " \ train_labels = train[["y","z"]].values
# "where stat_date = '{}' and device_id in {})tmp".format(start_date,device_id) test_values = test[features].values
# exp = ctx.read.format("jdbc").options(url="jdbc:mysql://192.168.15.12:4000/jerry_prod", test_labels = test[["y","z"]].values
# driver="com.mysql.jdbc.Driver",
# dbtable=dbtable, ucity_id_max = len(ucity_id)
# user="root", clevel1_id_max = len(clevel1_id)
# password="").load() ccity_name_max = len(ccity_name)
# exp.show(6) device_type_max = len(device_type)
# exp = exp.rdd.map(lambda x: (x[0], x[1], x[2])).subtract(click).map(lambda x: ((x[0], x[1], x[2]), 1)) \ manufacturer_max = len(manufacturer)
# .reduceByKey(lambda x, y: x + y).filter(lambda x: x[1] >= 3).map(lambda x: (x[0][0], x[0][1], x[0][2], 0)) channel_max = len(channel)
# click = click.map(lambda x: (x[0], x[1], x[2], 1)) top_max = len(top)
time_max = len(time)
def hive():
conf = SparkConf().setMaster("spark://10.30.181.88:7077").setAppName("My app") return train_values,train_labels,test_values,test_labels,ucity_id_max,clevel1_id_max,ccity_name_max,\
sc = SparkContext(conf=conf) device_type_max,manufacturer_max,channel_max,top_max,time_max
sc.setLogLevel("WARN")
sqlContext = HiveContext(sc)
sql = "select partition_date from online.tl_hdfs_maidian_view limit 10" def get_inputs():
my_dataframe = sqlContext.sql(sql) ucity_id = tf.placeholder(tf.int32, [None, 1], name="ucity_id")
my_dataframe.show(6) clevel1_id = tf.placeholder(tf.int32, [None, 1], name="clevel1_id")
ccity_name = tf.placeholder(tf.int32, [None, 1], name="ccity_name")
device_type = tf.placeholder(tf.int32, [None, 1], name="device_type")
manufacturer = tf.placeholder(tf.int32, [None, 1], name="manufacturer")
channel = tf.placeholder(tf.int32, [None, 1], name="channel")
top = tf.placeholder(tf.int32, [None, 1], name="top")
time = tf.placeholder(tf.int32, [None, 1], name="time")
targets = tf.placeholder(tf.float32, [None, 2], name="targets")
LearningRate = tf.placeholder(tf.float32, name="LearningRate")
return ucity_id,clevel1_id,ccity_name,device_type,manufacturer,channel,top,time,targets,LearningRate
def define_embedding_layers(combiner,embed_dim,ucity_id, ucity_id_max, clevel1_id_max,clevel1_id,
ccity_name_max,ccity_name,device_type_max,device_type,manufacturer_max,
manufacturer,channel,channel_max,top,top_max,time,time_max):
ucity_id_embed_matrix = tf.Variable(tf.random_normal([ucity_id_max, embed_dim], 0, 0.001))
ucity_id_embed_layer = tf.nn.embedding_lookup(ucity_id_embed_matrix, ucity_id)
if combiner == "sum":
ucity_id_embed_layer = tf.reduce_sum(ucity_id_embed_layer, axis=1, keep_dims=True)
clevel1_id_embed_matrix = tf.Variable(tf.random_uniform([clevel1_id_max, embed_dim], 0, 0.001))
clevel1_id_embed_layer = tf.nn.embedding_lookup(clevel1_id_embed_matrix, clevel1_id)
if combiner == "sum":
clevel1_id_embed_layer = tf.reduce_sum(clevel1_id_embed_layer, axis=1, keep_dims=True)
ccity_name_embed_matrix = tf.Variable(tf.random_uniform([ccity_name_max, embed_dim], 0, 0.001))
ccity_name_embed_layer = tf.nn.embedding_lookup(ccity_name_embed_matrix,ccity_name)
if combiner == "sum":
ccity_name_embed_layer = tf.reduce_sum(ccity_name_embed_layer, axis=1, keep_dims=True)
device_type_embed_matrix = tf.Variable(tf.random_uniform([device_type_max, embed_dim], 0, 0.001))
device_type_embed_layer = tf.nn.embedding_lookup(device_type_embed_matrix, device_type)
if combiner == "sum":
device_type_embed_layer = tf.reduce_sum(device_type_embed_layer, axis=1, keep_dims=True)
manufacturer_embed_matrix = tf.Variable(tf.random_uniform([manufacturer_max, embed_dim], 0, 0.001))
manufacturer_embed_layer = tf.nn.embedding_lookup(manufacturer_embed_matrix, manufacturer)
if combiner == "sum":
manufacturer_embed_layer = tf.reduce_sum(manufacturer_embed_layer, axis=1, keep_dims=True)
channel_embed_matrix = tf.Variable(tf.random_uniform([channel_max, embed_dim], 0, 0.001))
channel_embed_layer = tf.nn.embedding_lookup(channel_embed_matrix, channel)
if combiner == "sum":
channel_embed_layer = tf.reduce_sum(channel_embed_layer, axis=1, keep_dims=True)
top_embed_matrix = tf.Variable(tf.random_uniform([top_max, embed_dim], 0, 0.001))
top_embed_layer = tf.nn.embedding_lookup(top_embed_matrix, top)
if combiner == "sum":
top_embed_layer = tf.reduce_sum(top_embed_layer, axis=1, keep_dims=True)
time_embed_matrix = tf.Variable(tf.random_uniform([time_max, embed_dim], 0, 0.001))
time_embed_layer = tf.nn.embedding_lookup(time_embed_matrix, time)
if combiner == "sum":
time_embed_layer = tf.reduce_sum(time_embed_layer, axis=1, keep_dims=True)
esmm_embedding_layer = tf.concat([ucity_id_embed_layer, clevel1_id_embed_layer,ccity_name_embed_layer,
device_type_embed_layer,manufacturer_embed_layer,channel_embed_layer,
top_embed_layer,time_embed_layer], axis=1)
esmm_embedding_layer = tf.reshape(esmm_embedding_layer, [-1, embed_dim * 8])
return esmm_embedding_layer
def define_ctr_layer(esmm_embedding_layer):
ctr_layer_1 = tf.layers.dense(esmm_embedding_layer, 200, activation=tf.nn.relu)
ctr_layer_2 = tf.layers.dense(ctr_layer_1, 80, activation=tf.nn.relu)
ctr_layer_3 = tf.layers.dense(ctr_layer_2, 2) # [nonclick, click]
ctr_prob = tf.nn.softmax(ctr_layer_3) + 0.00000001
return ctr_prob
def define_cvr_layer(esmm_embedding_layer):
cvr_layer_1 = tf.layers.dense(esmm_embedding_layer, 200, activation=tf.nn.relu)
cvr_layer_2 = tf.layers.dense(cvr_layer_1, 80, activation=tf.nn.relu)
cvr_layer_3 = tf.layers.dense(cvr_layer_2, 2) # [nonbuy, buy]
cvr_prob = tf.nn.softmax(cvr_layer_3) + 0.00000001
return cvr_prob
def define_ctr_cvr_layer(esmm_embedding_layer):
layer_1 = tf.layers.dense(esmm_embedding_layer, 128 , activation=tf.nn.relu)
layer_2 = tf.layers.dense(layer_1, 16, activation=tf.nn.relu)
layer_3 = tf.layers.dense(layer_2, 2)
ctr_prob = tf.nn.softmax(layer_3) + 0.00000001
cvr_prob = tf.nn.softmax(layer_3) + 0.00000001
return ctr_prob, cvr_prob
if __name__ == '__main__': if __name__ == '__main__':
hive() embed_dim = 6
combiner = "sum"
train_values, train_labels, test_values, test_labels, ucity_id_max, clevel1_id_max, ccity_name_max, \
device_type_max, manufacturer_max, channel_max, top_max, time_max = get_data()
tf.reset_default_graph()
train_graph = tf.Graph()
with train_graph.as_default():
ucity_id, clevel1_id, ccity_name, device_type, manufacturer, channel, top, \
time, targets, LearningRate = get_inputs()
esmm_embedding_layer = define_embedding_layers(combiner,embed_dim,ucity_id, ucity_id_max, clevel1_id_max,clevel1_id,
ccity_name_max,ccity_name,device_type_max,device_type,manufacturer_max,
manufacturer,channel,channel_max,top,top_max,time,time_max)
ctr_prob, cvr_prob = define_ctr_cvr_layer(esmm_embedding_layer)
with tf.name_scope("loss"):
ctr_prob_one = tf.slice(ctr_prob, [0, 1], [-1, 1]) # [batch_size , 1]
cvr_prob_one = tf.slice(cvr_prob, [0, 1], [-1, 1]) # [batchsize, 1 ]
ctcvr_prob_one = ctr_prob_one * cvr_prob_one # [ctr*cvr]
ctcvr_prob = tf.concat([1 - ctcvr_prob_one, ctcvr_prob_one], axis=1)
ctr_label = tf.slice(targets, [0, 0], [-1, 1]) # target: [click, buy]
ctr_label = tf.concat([1 - ctr_label, ctr_label], axis=1) # [1-click, click]
cvr_label = tf.slice(targets, [0, 1], [-1, 1])
ctcvr_label = tf.concat([1 - cvr_label, cvr_label], axis=1)
# 单列,判断Click是否=1
ctr_clk = tf.slice(targets, [0, 0], [-1, 1])
ctr_clk_dup = tf.concat([ctr_clk, ctr_clk], axis=1)
# clicked subset CVR loss
cvr_loss = - tf.multiply(tf.log(cvr_prob) * ctcvr_label, ctr_clk_dup)
# batch CTR loss
ctr_loss = - tf.log(ctr_prob) * ctr_label # -y*log(p)-(1-y)*log(1-p)
# batch CTCVR loss
ctcvr_loss = - tf.log(ctcvr_prob) * ctcvr_label
# loss = tf.reduce_mean(ctr_loss + ctcvr_loss + cvr_loss)
# loss = tf.reduce_mean(ctr_loss + ctcvr_loss)
# loss = tf.reduce_mean(ctr_loss + cvr_loss)
loss = tf.reduce_mean(cvr_loss)
ctr_loss = tf.reduce_mean(ctr_loss)
cvr_loss = tf.reduce_mean(cvr_loss)
ctcvr_loss = tf.reduce_mean(ctcvr_loss)
# 优化损失
# train_op = tf.train.AdamOptimizer(lr).minimize(loss) #cost
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(lr)
gradients = optimizer.compute_gradients(loss) # cost
train_op = optimizer.apply_gradients(gradients, global_step=global_step)
...@@ -156,14 +156,15 @@ def get_data(): ...@@ -156,14 +156,15 @@ def get_data():
df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id",4: "clevel1_id", 5: "ccity_name", df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id",4: "clevel1_id", 5: "ccity_name",
6:"device_type",7:"manufacturer",8:"channel",9:"top",10:"time",11:"device_id"}) 6:"device_type",7:"manufacturer",8:"channel",9:"top",10:"time",11:"device_id"})
print("esmm data ok") print("esmm data ok")
print(df.head(2)) # print(df.head(2)
df["clevel1_id"] = df["clevel1_id"].astype("str") df["clevel1_id"] = df["clevel1_id"].astype("str")
df["y"] = df["y"].astype("str") df["y"] = df["y"].astype("str")
df["z"] = df["z"].astype("str") df["z"] = df["z"].astype("str")
df["top"] = df["top"].astype("str") df["top"] = df["top"].astype("str")
df["y"] = df["stat_date"].str.cat([df["device_id"].values.tolist(),df["y"].values.tolist(),df["z"].values.tolist()], sep=",") df["y"] = df["stat_date"].str.cat([df["device_id"].values.tolist(),df["y"].values.tolist(),df["z"].values.tolist()], sep=",")
df = df.drop(["z","stat_date","device_id"], axis=1).fillna(0.0)
df = df.drop(["z","stat_date","device_id","time"], axis=1).fillna("na")
print(df.head(2)) print(df.head(2))
features = 0 features = 0
for i in ["ucity_id","clevel1_id","ccity_name","device_type","manufacturer","channel"]: for i in ["ucity_id","clevel1_id","ccity_name","device_type","manufacturer","channel"]:
...@@ -210,7 +211,8 @@ def get_predict_set(ucity_id,model,ccity_name,manufacturer,channel): ...@@ -210,7 +211,8 @@ def get_predict_set(ucity_id,model,ccity_name,manufacturer,channel):
sql = "select e.y,e.z,e.label,e.ucity_id,e.clevel1_id,e.ccity_name," \ sql = "select e.y,e.z,e.label,e.ucity_id,e.clevel1_id,e.ccity_name," \
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time,e.device_id,e.cid_id " \ "u.device_type,u.manufacturer,u.channel,c.top,cid_time.time,e.device_id,e.cid_id " \
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \ "from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id" "left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id " \
"where e.device_id = '358035085192742'"
df = con_sql(db, sql) df = con_sql(db, sql)
df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel1_id", 5: "ccity_name", df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel1_id", 5: "ccity_name",
6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "time", 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "time",
...@@ -244,7 +246,7 @@ def get_predict_set(ucity_id,model,ccity_name,manufacturer,channel): ...@@ -244,7 +246,7 @@ def get_predict_set(ucity_id,model,ccity_name,manufacturer,channel):
df["y"] = df["label"].str.cat( df["y"] = df["label"].str.cat(
[df["device_id"].values.tolist(), df["ucity_id"].values.tolist(), df["cid_id"].values.tolist(), [df["device_id"].values.tolist(), df["ucity_id"].values.tolist(), df["cid_id"].values.tolist(),
df["y"].values.tolist(), df["z"].values.tolist()], sep=",") df["y"].values.tolist(), df["z"].values.tolist()], sep=",")
df = df.drop(["z","label","device_id","cid_id"], axis=1).fillna(0.0) df = df.drop(["z","label","device_id","cid_id","time"], axis=1).fillna(0.0)
print("before transform") print("before transform")
print(df.shape) print(df.shape)
temp_series = model.transform(df,n=160000, processes=22) temp_series = model.transform(df,n=160000, processes=22)
...@@ -289,7 +291,7 @@ if __name__ == "__main__": ...@@ -289,7 +291,7 @@ if __name__ == "__main__":
a = time.time() a = time.time()
temp, validate_date, ucity_id,ccity_name,manufacturer,channel = get_data() temp, validate_date, ucity_id,ccity_name,manufacturer,channel = get_data()
model = transform(temp, validate_date) model = transform(temp, validate_date)
# get_predict_set(ucity_id,model,ccity_name,manufacturer,channel) get_predict_set(ucity_id,model,ccity_name,manufacturer,channel)
b = time.time() b = time.time()
print("cost(分钟)") print("cost(分钟)")
print((b-a)/60) print((b-a)/60)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment