Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
919ec9d3
Commit
919ec9d3
authored
Jun 20, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
b0f44c0b
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
373 additions
and
54 deletions
+373
-54
multi_hot.py
tensnsorflow/multi_hot.py
+373
-54
No files found.
tensnsorflow/multi_hot.py
View file @
919ec9d3
import
pandas
as
pd
# -*- coding: utf-8 -*-
import
pymysql
from
pyspark.conf
import
SparkConf
import
pytispark.pytispark
as
pti
from
pyspark.sql
import
SparkSession
import
datetime
from
sqlalchemy
import
create_engine
import
pandas
as
pd
import
time
from
pyspark
import
StorageLevel
def
app_list_func
(
x
,
l
):
b
=
str
(
x
)
.
split
(
","
)
e
=
[]
for
i
in
b
:
if
i
in
l
.
keys
():
e
.
append
(
l
[
i
])
else
:
e
.
append
(
0
)
return
e
def
get_list
(
db
,
sql
,
n
):
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
v
=
list
(
set
([
i
[
0
]
for
i
in
result
]))
app_list_value
=
[
str
(
i
)
.
split
(
","
)
for
i
in
v
]
app_list_unique
=
[]
for
i
in
app_list_value
:
app_list_unique
.
extend
(
i
)
app_list_unique
=
list
(
set
(
app_list_unique
))
number
=
len
(
app_list_unique
)
app_list_map
=
dict
(
zip
(
app_list_unique
,
list
(
range
(
n
,
number
+
n
))))
db
.
close
()
return
number
,
app_list_map
def
get_map
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select app_list from device_app_list"
a
=
time
.
time
()
apps_number
,
app_list_map
=
get_list
(
db
,
sql
,
16
)
print
(
"applist"
)
print
((
time
.
time
()
-
a
)
/
60
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_ids from diary_feat"
b
=
time
.
time
()
leve2_number
,
leve2_map
=
get_list
(
db
,
sql
,
16
+
apps_number
)
print
(
"leve2"
)
print
((
time
.
time
()
-
b
)
/
60
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level3_ids from diary_feat"
c
=
time
.
time
()
leve3_number
,
leve3_map
=
get_list
(
db
,
sql
,
16
+
leve2_number
+
apps_number
)
print
((
time
.
time
()
-
c
)
/
60
)
return
apps_number
,
app_list_map
,
leve2_number
,
leve2_map
,
leve3_number
,
leve3_map
def
get_unique
(
db
,
sql
):
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
v
=
list
(
set
([
i
[
0
]
for
i
in
result
]))
db
.
close
()
print
(
sql
)
print
(
len
(
v
))
return
v
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
finally
:
db
.
close
()
return
df
def
multi
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_prod'
)
sql
=
"select diary_id,level2_ids from diary_feat"
df
=
con_sql
(
db
,
sql
)
.
dropna
()
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"cid"
,
1
:
"level"
})
df
[
"l1"
]
=
"lost"
df
[
"l2"
]
=
"lost"
df
[
"l3"
]
=
"lost"
for
i
in
list
(
df
[
"level"
]
.
unique
()):
l
=
[
int
(
j
)
for
j
in
i
.
split
(
";"
)]
l
=
sorted
(
l
)
if
len
(
l
)
>=
3
:
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l1"
]]
=
l
[
0
]
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l2"
]]
=
l
[
1
]
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l3"
]]
=
l
[
2
]
elif
len
(
l
)
==
2
:
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l1"
]]
=
l
[
0
]
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l2"
]]
=
l
[
1
]
elif
len
(
l
)
==
1
:
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l1"
]]
=
l
[
0
]
df
=
df
.
drop
(
"level"
,
axis
=
1
)
print
(
df
.
head
())
# a = list(df["l1"].unique())
# b = list(df["l2"].unique())
# c = list(df["l3"].unique())
# print(len(a))
# print(a)
# print(len(b))
# print(b)
# print(len(c))
# print(c)
yconnect
=
create_engine
(
'mysql+pymysql://root:3SYz54LS9#^9sBvC@10.66.157.22:4000/jerry_test?charset=utf8'
)
n
=
200000
for
i
in
range
(
0
,
df
.
shape
[
0
],
n
):
if
i
==
0
:
temp
=
df
.
iloc
[
0
:
n
]
elif
i
+
n
>
df
.
shape
[
0
]:
temp
=
df
.
iloc
[
i
:]
else
:
temp
=
df
.
iloc
[
i
:
i
+
n
]
pd
.
io
.
sql
.
to_sql
(
temp
,
"cid_level2"
,
yconnect
,
schema
=
'jerry_test'
,
if_exists
=
'append'
,
index
=
False
)
print
(
"insert done"
)
def
get_pre_number
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select count(*) from esmm_pre_data"
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchone
()[
0
]
print
(
"预测集数量:"
)
print
(
result
)
db
.
close
()
def
feature_engineer
():
apps_number
,
app_list_map
,
level2_number
,
leve2_map
,
level3_number
,
leve3_map
=
get_map
()
app_list_map
[
"app_list"
]
=
"app_list"
leve3_map
[
"level3_ids"
]
=
"level3_ids"
leve3_map
[
"search_tag3"
]
=
"search_tag3"
for
i
in
[
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
]:
leve2_map
[
i
]
=
i
unique_values
=
[]
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct stat_date from esmm_train_data_dwell"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ucity_id from esmm_train_data_dwell"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct ccity_name from esmm_train_data_dwell"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct time from cid_time_cut"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct device_type from user_feature"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct manufacturer from user_feature"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct channel from user_feature"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct top from cid_type_top"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct price_min from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct treatment_method from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct price_max from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct treatment_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct maintain_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct recover_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data_dwell"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
sql
=
"select doctor.hospital_id from jerry_test.esmm_train_data_dwell e "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
unique_values
.
extend
(
get_unique
(
db
,
sql
))
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
]
unique_values
.
extend
(
features
)
print
(
"unique_values length"
)
print
(
len
(
unique_values
))
print
(
"特征维度:"
)
print
(
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
))
temp
=
list
(
range
(
16
+
apps_number
+
level2_number
+
level3_number
,
16
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
spark
.
sql
(
sql
)
print
(
"train number"
)
print
(
df
.
count
())
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
])
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]],
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
)
))
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
]))
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2"
,
"search_tag3"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"test_tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
print
(
"train tfrecord done"
)
print
((
h
-
f
)
/
60
)
print
(
"训练集样本总量:"
)
print
(
rdd
.
count
())
get_pre_number
()
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
]))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2"
,
"search_tag3"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
def
get_predict
(
date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
):
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_pre_data e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"where doris.get_date = '{}'"
.
format
(
date
)
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
]
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"device_id"
,
"cid_id"
])
print
(
"esmm pre count"
)
print
(
df
.
count
())
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
f
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
app_list_func
(
x
[
13
],
leve2_map
),
app_list_func
(
x
[
14
],
leve2_map
),
app_list_func
(
x
[
15
],
leve2_map
),
[
value_map
.
get
(
date
,
1
),
value_map
.
get
(
x
[
16
],
2
),
value_map
.
get
(
x
[
17
],
3
),
value_map
.
get
(
x
[
18
],
4
),
value_map
.
get
(
x
[
19
],
5
),
value_map
.
get
(
x
[
20
],
6
),
value_map
.
get
(
x
[
21
],
7
),
value_map
.
get
(
x
[
22
],
8
),
value_map
.
get
(
x
[
23
],
9
),
value_map
.
get
(
x
[
24
],
10
),
value_map
.
get
(
x
[
25
],
11
),
value_map
.
get
(
x
[
26
],
12
),
value_map
.
get
(
x
[
27
],
13
),
value_map
.
get
(
x
[
28
],
14
),
value_map
.
get
(
x
[
29
],
15
)],
app_list_func
(
x
[
30
],
leve2_map
),
app_list_func
(
x
[
31
],
leve3_map
)))
\
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
# native_pre = spark.createDataFrame(rdd.filter(lambda x:x[0] == 0).map(lambda x:(x[3],x[4],x[5],x[17])))\
# .toDF("city","uid","cid_id","number")
# print("native csv")
# native_pre.toPandas().to_csv(local_path+"native.csv", header=True)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
],
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2"
,
"search_tag3"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
repartition
(
100
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"test_native/"
,
mode
=
"overwrite"
)
print
(
"native tfrecord done"
)
h
=
time
.
time
()
print
((
h
-
f
)
/
60
)
# nearby_pre = spark.createDataFrame(rdd.filter(lambda x: x[0] == 1).map(lambda x: (x[3], x[4], x[5],x[17]))) \
# .toDF("city", "uid", "cid_id","number")
# print("nearby csv")
# nearby_pre.toPandas().to_csv(local_path + "nearby.csv", header=True)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
],
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2"
,
"search_tag3"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
repartition
(
100
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"test_nearby/"
,
mode
=
"overwrite"
)
print
(
"nearby tfrecord done"
)
if
__name__
==
'__main__'
:
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
"false"
)
\
.
set
(
"spark.tispark.plan.allow_index_read"
,
"true"
)
\
.
set
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
\
.
set
(
"spark.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
.
set
(
"spark.io.compression.codec"
,
"lzf"
)
\
.
set
(
"spark.driver.maxResultSize"
,
"8g"
)
.
set
(
"spark.sql.avro.compression.codec"
,
"snappy"
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
ti
=
pti
.
TiContext
(
spark
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
ti
.
tidbMapDatabase
(
"eagle"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
spark
.
stop
()
if
__name__
==
"__main__"
:
multi
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment