Commit 970f1871 authored by 高雅喆's avatar 高雅喆

增加美购的用户画像

parent f18b1c51
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pymysql
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr
from email.mime.multipart import MIMEMultipart
from email.mime.application import MIMEApplication
import redis
import datetime
from pyspark import SparkConf
import time
from pyspark.sql import SparkSession
import json
import numpy as np
import pandas as pd
from pyspark.sql.functions import lit
from pyspark.sql.functions import concat_ws
def send_email(app,id,e):
# 第三方 SMTP 服务
mail_host = 'smtp.exmail.qq.com' # 设置服务器
mail_user = "gaoyazhe@igengmei.com" # 用户名
mail_pass = "VCrKTui99a7ALhiK" # 口令
sender = 'gaoyazhe@igengmei.com'
receivers = ['gaoyazhe@igengmei.com'] # 接收邮件,可设置为你的QQ邮箱或者其他邮箱
e = str(e)
msg = MIMEMultipart()
part = MIMEText('app_id:'+id+':fail', 'plain', 'utf-8')
msg.attach(part)
msg['From'] = formataddr(["gaoyazhe", sender])
# 括号里的对应收件人邮箱昵称、收件人邮箱账号
msg['To'] = ";".join(receivers)
# message['Cc'] = ";".join(cc_reciver)
msg['Subject'] = 'spark streaming:app_name:'+app
with open('error.txt','w') as f:
f.write(e)
f.close()
part = MIMEApplication(open('error.txt', 'r').read())
part.add_header('Content-Disposition', 'attachment', filename="error.txt")
msg.attach(part)
try:
smtpObj = smtplib.SMTP_SSL(mail_host, 465)
smtpObj.login(mail_user, mail_pass)
smtpObj.sendmail(sender, receivers, msg.as_string())
except smtplib.SMTPException:
print('error')
def get_data_by_mysql(host, port, user, passwd, db, sql):
try:
db = pymysql.connect(host=host, port=port, user=user, passwd=passwd, db=db, cursorclass=pymysql.cursors.DictCursor)
cursor = db.cursor()
cursor.execute(sql)
results = cursor.fetchall()
db.close()
return results
except Exception as e:
print(e)
def get_all_search_word_and_synonym_tags():
"""
:return:dict {"search_word1":[tag_list1],"search_word2":[tag_list2]...}
"""
try:
sql = "select a.keyword , c.id from api_wordrel a " \
"left join api_wordrelsynonym b on a.id = b.wordrel_id " \
"left join api_tag c on b.word=c.name " \
"where a.category in (1,13,10,11,12) and c.tag_type+0<'4'+0 and c.is_online=1"
mysql_results = get_data_by_mysql('172.16.30.141', 3306, 'work', 'BJQaT9VzDcuPBqkd', 'zhengxing', sql)
result_dict = dict()
for data in mysql_results:
if data['keyword'] not in result_dict:
result_dict[data['keyword']] = [data['id']]
else:
result_dict[data['keyword']].append(data['id'])
return result_dict
except Exception as e:
print(e)
def get_all_synonym_tags():
"""
:return:dict {"search_word1":[tag_list1],"search_word2":[tag_list2]...}
"""
try:
sql = "select a.word, b.id from api_wordrelsynonym a left join api_tag b " \
"on a.word=b.name where b.tag_type+0<'4'+0 and b.is_online=1"
mysql_results = get_data_by_mysql('172.16.30.141', 3306, 'work', 'BJQaT9VzDcuPBqkd', 'zhengxing', sql)
result_dict = dict()
for data in mysql_results:
if data['word'] not in result_dict:
result_dict[data['word']] = [data['id']]
else:
result_dict[data['word']].append(data['id'])
return result_dict
except Exception as e:
print(e)
def get_all_word_tags():
try:
search_word_and_synonym_tags = get_all_search_word_and_synonym_tags()
synonym_tags = get_all_synonym_tags()
if search_word_and_synonym_tags and synonym_tags:
return {**synonym_tags, **search_word_and_synonym_tags}
except Exception as e:
print(e)
def get_all_tag_tag_type():
"""
:return:dict {tag_id1:tag_type1,tag_id2:tag_type2...}
"""
try:
sql = "select id,tag_type from api_tag where tag_type+0<'4'+0 and is_online=1"
mysql_results = get_data_by_mysql('172.16.30.141', 3306, 'work', 'BJQaT9VzDcuPBqkd', 'zhengxing', sql)
result_dict = dict()
for data in mysql_results:
result_dict[data['id']] = data['tag_type']
return result_dict
except Exception as e:
print(e)
def get_all_3tag_2tag():
try:
sql = "select a.child_id,a.parent_id from api_tagrelation a" \
" left join api_tag b on a.parent_id=b.id " \
"where a.child_id in (select id from api_tag where tag_type='3' and is_online=1) " \
"and b.tag_type='2'"
mysql_results = get_data_by_mysql('172.16.30.141', 3306, 'work', 'BJQaT9VzDcuPBqkd', 'zhengxing', sql)
result_dict = dict()
for data in mysql_results:
if data['child_id'] not in result_dict:
result_dict[data['child_id']] = [data['parent_id']]
else:
result_dict[data['child_id']].append(data['parent_id'])
return result_dict
except Exception as e:
print(e)
def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list):
try:
tag2s = []
if tag3 in all_3tag_2tag:
tag2s = all_3tag_2tag[tag3]
for tag2 in tag2s:
if tag2 in user_log_df_tag2_list:
return tag2
return tag3
except Exception as e:
print(e)
def compute_henqiang(x):
score = 15-x*((15-0.5)/180)
if score>0.5:
return score
else:
return 0.5
def compute_jiaoqiang(x):
score = 12-x*(12/180)
if score>0.5:
return score
else:
return 0.5
def compute_ruoyixiang(x):
score = 5-x*((5-0.5)/180)
if score>0.5:
return score
else:
return 0.5
def compute_validate(x):
score = 10-x*((10-0.5)/180)
if score>0.5:
return score
else:
return 0.5
def compute_ai_scan(x):
score = 2 - x * ((2 - 0.5) / 180)
if score>0.5:
return score
else:
return 0.5
def get_action_tag_count(df, action_time):
try:
if not df[df['time'] == action_time].empty:
return len(df[df['time'] == action_time])
else:
return 1
except Exception as e:
print(e)
def get_user_service_portrait(cl_id, all_word_tags, all_tag_tag_type, all_3tag_2tag):
try:
db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC',
db='jerry_test', charset='utf8')
cur_jerry_test = db_jerry_test.cursor()
# 用户的非搜索、支付、验证的行为
user_df_service_sql = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log " \
"where cl_id ='{}' and action not in " \
"('api/order/validate','api/settlement/alipay_callback','do_search')".format(cl_id)
cur_jerry_test.execute(user_df_service_sql)
user_df_service = pd.DataFrame(list(cur_jerry_test.fetchall()))
user_df_service.columns = ["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"]
# 用户的搜索行为
user_df_search_sql = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log " \
"where cl_id ='{}' and action = 'do_search'".format(cl_id)
cur_jerry_test.execute(user_df_search_sql)
user_df_search = pd.DataFrame(list(cur_jerry_test.fetchall()))
user_df_search.columns = ["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"]
db_jerry_test.close()
# 搜索词转成tag
# user_df_search_2_tag = pd.DataFrame(columns=list(user_df_service.columns))
for index, row in user_df_search.iterrows():
if row['tag_referrer'] in all_word_tags:
for search_tag in all_word_tags[row['tag_referrer']]:
row['tag_id'] = int(search_tag)
user_df_service = user_df_service.append(row, ignore_index=True)
break
# 增加df字段(days_diff_now, tag_type, tag2)
if not user_df_service.empty:
user_df_service["days_diff_now"] = round((int(time.time()) - user_df_service["time"].astype(float)) / (24 * 60 * 60))
user_df_service["tag_type"] = user_df_service.apply(lambda x: all_tag_tag_type.get(x["tag_id"]), axis=1)
user_df_service = user_df_service[user_df_service['tag_type'].isin(['2','3'])]
user_log_df_tag2_list = user_df_service[user_df_service['tag_type'] == '2']['tag_id'].unique().tolist()
user_df_service["tag2"] = user_df_service.apply(lambda x:
get_tag2_from_tag3(x.tag_id, all_3tag_2tag, user_log_df_tag2_list)
if x.tag_type == '3' else x.tag_id, axis=1)
user_df_service["tag2_type"] = user_df_service.apply(lambda x: all_tag_tag_type.get(x["tag2"]), axis=1)
# 算分及比例
user_df_service["tag_score"] = user_df_service.apply(
lambda x: compute_henqiang(x.days_diff_now)/get_action_tag_count(user_df_service, x.time) if x.score_type == "henqiang" else (
compute_jiaoqiang(x.days_diff_now)/get_action_tag_count(user_df_service, x.time) if x.score_type == "jiaoqiang" else (
compute_ai_scan(x.days_diff_now)/get_action_tag_count(user_df_service, x.time) if x.score_type == "ai_scan" else (
compute_ruoyixiang(x.days_diff_now)/get_action_tag_count(user_df_service, x.time) if x.score_type == "ruoyixiang" else
compute_validate(x.days_diff_now)/get_action_tag_count(user_df_service, x.time)))), axis=1)
tag_score_sum = user_df_service.groupby(by=["tag2", "tag2_type"]).agg({'tag_score': sum}).reset_index().sort_values(by=["tag_score"],ascending=False)
tag_score_sum['weight'] = 100 * tag_score_sum['tag_score'] / tag_score_sum['tag_score'].sum()
gmkv_tag_score_sum = tag_score_sum[["tag2", "tag_score", "weight"]].to_dict('record')
# 写gmkv
gm_kv_cli = redis.Redis(host="172.16.40.135", port=5379, db=2, socket_timeout=2000)
cl_id_portrait_key = "user:service_portrait_tags:cl_id:" + str(cl_id)
tag_id_list_json = json.dumps(gmkv_tag_score_sum)
gm_kv_cli.set(cl_id_portrait_key, tag_id_list_json)
gm_kv_cli.expire(cl_id_portrait_key, time=30 * 24 * 60 * 60)
return gmkv_tag_score_sum
except Exception as e:
print(e)
if __name__ == '__main__':
try:
db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC',
db='jerry_test', charset='utf8')
cur_jerry_test = db_jerry_test.cursor()
# 获取最近30天内的用户设备id
sql_device_ids = "select distinct cl_id from user_new_tag_log " \
"where time > UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 30 day))"
cur_jerry_test.execute(sql_device_ids)
device_ids_lst = [i[0] for i in cur_jerry_test.fetchall()]
db_jerry_test.close()
# 获取搜索词及其近义词对应的tag
all_word_tags = get_all_word_tags()
all_tag_tag_type = get_all_tag_tag_type()
# 3级tag对应的2级tag
all_3tag_2tag = get_all_3tag_2tag()
# rdd
sparkConf = SparkConf().set("spark.hive.mapred.supports.subdirectories", "true") \
.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true") \
.set("spark.tispark.plan.allow_index_double_read", "false") \
.set("spark.tispark.plan.allow_index_read", "true") \
.set("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") \
.set("spark.tispark.pd.addresses", "172.16.40.158:2379").set("spark.io.compression.codec", "lzf") \
.set("spark.driver.maxResultSize", "8g").set("spark.sql.avro.compression.codec", "snappy")
spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate()
spark.sparkContext.setLogLevel("WARN")
device_ids_lst_rdd = spark.sparkContext.parallelize(device_ids_lst)
result = device_ids_lst_rdd.repartition(100).map(lambda x: get_user_service_portrait(x, all_word_tags, all_tag_tag_type, all_3tag_2tag))
result.collect()
except Exception as e:
send_email("dist_update_user_portrait_service", "dist_update_user_portrait_service", "dist_update_user_portrait_service")
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment