Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
a892d9e7
Commit
a892d9e7
authored
Oct 15, 2019
by
高雅喆
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
增加分数指数衰减的函数
parent
04f0591c
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
42 additions
and
15 deletions
+42
-15
evaluation_metrics.py
eda/smart_rank/evaluation_metrics.py
+0
-0
tool.py
eda/smart_rank/tool.py
+42
-15
No files found.
eda/smart_rank/evaluation_metrics.py
View file @
a892d9e7
This diff is collapsed.
Click to expand it.
eda/smart_rank/tool.py
View file @
a892d9e7
...
@@ -174,33 +174,53 @@ def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list):
...
@@ -174,33 +174,53 @@ def get_tag2_from_tag3(tag3, all_3tag_2tag, user_log_df_tag2_list):
print
(
e
)
print
(
e
)
def
compute_henqiang
(
x
):
def
compute_henqiang
(
x
,
decay_days
=
180
,
normalization_size
=
7
,
exponential
=
1
):
score
=
15
-
x
*
((
15
-
0.5
)
/
180
)
if
exponential
:
if
score
>
0.5
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
15
-
2
**
alpha
*
((
15
-
0.5
)
/
decay_days
)
else
:
score
=
15
-
x
*
((
15
-
0.5
)
/
decay_days
)
if
score
>
0.5
:
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_jiaoqiang
(
x
):
def
compute_jiaoqiang
(
x
,
decay_days
=
180
,
normalization_size
=
7
,
exponential
=
1
):
score
=
12
-
x
*
(
12
/
180
)
if
exponential
:
if
score
>
0.5
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
12
-
2
**
alpha
*
((
12
-
0.5
)
/
decay_days
)
else
:
score
=
12
-
x
*
((
12
-
0.5
)
/
decay_days
)
if
score
>
0.5
:
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_ruoyixiang
(
x
):
def
compute_ruoyixiang
(
x
,
decay_days
=
180
,
normalization_size
=
7
,
exponential
=
1
):
score
=
5
-
x
*
((
5
-
0.5
)
/
180
)
if
exponential
:
if
score
>
0.5
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
5
-
2
**
alpha
*
((
5
-
0.5
)
/
decay_days
)
else
:
score
=
5
-
x
*
((
5
-
0.5
)
/
decay_days
)
if
score
>
0.5
:
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_validate
(
x
):
def
compute_validate
(
x
,
decay_days
=
180
,
normalization_size
=
7
,
exponential
=
1
):
score
=
10
-
x
*
((
10
-
0.5
)
/
180
)
if
exponential
:
if
score
>
0.5
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
10
-
2
**
alpha
*
((
10
-
0.5
)
/
decay_days
)
else
:
score
=
10
-
x
*
((
10
-
0.5
)
/
decay_days
)
if
score
>
0.5
:
return
score
return
score
else
:
else
:
return
0.5
return
0.5
def
compute_ai_scan
(
x
):
def
compute_ai_scan
(
x
,
decay_days
=
180
,
normalization_size
=
7
,
exponential
=
1
):
score
=
2
-
x
*
((
2
-
0.5
)
/
180
)
if
exponential
:
if
score
>
0.5
:
alpha
=
exponential_decay
(
x
,
decay_days
,
normalization_size
)
score
=
2
-
2
**
alpha
*
((
2
-
0.5
)
/
decay_days
)
else
:
score
=
2
-
x
*
((
2
-
0.5
)
/
decay_days
)
if
score
>
0.5
:
return
score
return
score
else
:
else
:
return
0.5
return
0.5
...
@@ -212,3 +232,10 @@ def get_action_tag_count(df, action_time):
...
@@ -212,3 +232,10 @@ def get_action_tag_count(df, action_time):
return
1
return
1
except
Exception
as
e
:
except
Exception
as
e
:
print
(
e
)
print
(
e
)
def
exponential_decay
(
days_diff
,
decay_days
=
180
,
normalization_size
=
7
):
x
=
np
.
arange
(
1
,
decay_days
+
1
,
1
)
# 天数差归一化到[0, normalization_size]
a
=
(
normalization_size
-
0
)
*
(
days_diff
-
min
(
x
))
/
(
max
(
x
)
-
min
(
x
))
return
a
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment