Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
ad9e3dbe
Commit
ad9e3dbe
authored
Apr 30, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
26ec027b
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
89 additions
and
13 deletions
+89
-13
multi.py
tensnsorflow/multi.py
+22
-13
tf_record.py
tensnsorflow/tf_record.py
+67
-0
No files found.
tensnsorflow/multi.py
View file @
ad9e3dbe
...
...
@@ -198,30 +198,39 @@ def con_sql(db,sql):
def
test
():
# sql = "select stat_date,cid_id from esmm_train_data e where stat_date = '{}' limit 60".format("2019-04-25")
#
# df = spark.sql(sql)
# df.show(6)
#
# # df.write.csv('/recommend/tr', mode='overwrite', header=True)
# df.write.format("avro").save(path="/recommend/tr", mode="overwrite")
sql
=
"select stat_date,cid_id from esmm_train_data e where stat_date >= '{}'"
.
format
(
"2019-04-25"
)
df
=
spark
.
sql
(
sql
)
df
.
show
(
6
)
from
hdfs
import
InsecureClient
from
hdfs.ext.dataframe
import
read_dataframe
from
hdfs.ext.dataframe
import
write_dataframe
client
=
InsecureClient
(
'http://nvwa01:50070'
)
hdfs_path
=
"/recommend/va"
df
.
toPandas
()
.
write_dataframe
(
client
,
hdfs_path
,
df
)
# df.write.csv('/recommend/tr', mode='overwrite', header=True)
# df.write.format("avro").save(path="/recommend/tr", mode="overwrite")
client
=
InsecureClient
(
'http://nvwa01:50070'
)
df
=
read_dataframe
(
client
,
"/recommend/tr/part-00000-80d4e128-4a79-41de-9473-e4d0c5665047-c000.avro"
)
print
(
df
.
head
())
# from hdfs import InsecureClient
# from hdfs.ext.dataframe import read_dataframe
# from hdfs.ext.dataframe import write_dataframe
#
#
# client = InsecureClient('http://nvwa01:50070')
#
#
# df = read_dataframe(client,"/recommend/tr/part-00000-80d4e128-4a79-41de-9473-e4d0c5665047-c000.avro")
#
#
# print(df.head())
# spark.sql("use online")
# spark.sql("ADD JAR /srv/apps/brickhouse-0.7.1-SNAPSHOT.jar")
...
...
tensnsorflow/tf_record.py
0 → 100644
View file @
ad9e3dbe
#coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
pandas
as
pd
import
os
import
glob
import
tensorflow
as
tf
import
numpy
as
np
from
multiprocessing
import
Pool
as
ThreadPool
flags
=
tf
.
app
.
flags
FLAGS
=
flags
.
FLAGS
LOG
=
tf
.
logging
tf
.
app
.
flags
.
DEFINE_string
(
"input_dir"
,
"./"
,
"input dir"
)
tf
.
app
.
flags
.
DEFINE_string
(
"output_dir"
,
"./"
,
"output dir"
)
tf
.
app
.
flags
.
DEFINE_integer
(
"threads"
,
16
,
"threads num"
)
def
gen_tfrecords
(
in_file
):
basename
=
os
.
path
.
basename
(
in_file
)
+
".tfrecord"
out_file
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
basename
)
tfrecord_out
=
tf
.
python_io
.
TFRecordWriter
(
out_file
)
df
=
pd
.
read_csv
(
in_file
)
for
i
in
range
(
df
.
shape
[
0
]):
feats
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
id
=
np
.
array
([])
for
j
in
feats
:
id
=
np
.
append
(
id
,
df
[
j
][
i
])
app_list
=
np
.
array
(
str
(
df
[
"app_list"
][
i
])
.
split
(
","
))
level2_list
=
np
.
array
(
str
(
df
[
"clevel2_id"
][
i
])
.
split
(
","
))
level3_list
=
np
.
array
(
str
(
df
[
"level3_ids"
][
i
])
.
split
(
","
))
features
=
tf
.
train
.
Features
(
feature
=
{
"y"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"y"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
FloatList
(
value
=
[
df
[
"z"
][
i
]])),
"ids"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
id
.
astype
(
np
.
int
))),
"app_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
app_list
.
astype
(
np
.
int
))),
"level2_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level2_list
.
astype
(
np
.
int
))),
"level3_list"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
level3_list
.
astype
(
np
.
int
)))
})
example
=
tf
.
train
.
Example
(
features
=
features
)
serialized
=
example
.
SerializeToString
()
tfrecord_out
.
write
(
serialized
)
tfrecord_out
.
close
()
def
main
(
_
):
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
mkdir
(
FLAGS
.
output_dir
)
file_list
=
glob
.
glob
(
os
.
path
.
join
(
FLAGS
.
input_dir
,
"*.csv"
))
print
(
"total files:
%
d"
%
len
(
file_list
))
pool
=
ThreadPool
(
FLAGS
.
threads
)
# Sets the pool size
pool
.
map
(
gen_tfrecords
,
file_list
)
pool
.
close
()
pool
.
join
()
if
__name__
==
"__main__"
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
tf
.
app
.
run
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment