Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
b4bfaa68
Commit
b4bfaa68
authored
May 23, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
7eb0395f
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
232 additions
and
216 deletions
+232
-216
feature_engineering.py
tensnsorflow/feature_engineering.py
+227
-210
multi.py
tensnsorflow/multi.py
+5
-6
No files found.
tensnsorflow/feature_engineering.py
View file @
b4bfaa68
import
pandas
as
pd
# -*- coding: utf-8 -*-
import
pymysql
from
pyspark.conf
import
SparkConf
import
pytispark.pytispark
as
pti
from
pyspark.sql
import
SparkSession
import
datetime
import
tensorflow
as
tf
import
pandas
as
pd
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
finally
:
db
.
close
()
return
df
def
app_list_func
(
x
,
l
):
b
=
str
(
x
)
.
split
(
","
)
e
=
[]
for
i
in
b
:
if
i
in
l
.
keys
():
e
.
append
(
l
[
i
])
else
:
e
.
append
(
0
)
return
e
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
def
multi_hot
(
df
,
column
,
n
):
v
=
df
.
select
(
column
)
.
distinct
()
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
()
app_list_value
=
[
str
(
i
)
.
split
(
","
)
for
i
in
v
]
app_list_unique
=
[]
for
i
in
app_list_value
:
app_list_unique
.
extend
(
i
)
app_list_unique
=
list
(
set
(
app_list_unique
))
number
=
len
(
app_list_unique
)
app_list_map
=
dict
(
zip
(
app_list_unique
,
list
(
range
(
n
,
number
+
n
))))
return
number
,
app_list_map
def
feature_engineer
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
30
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
2
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time "
\
"from esmm_train_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id "
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_train_data e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.train_Knowledge_network_data k on feat.level2 = k.level2_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id"
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
con_sql
(
db
,
sql
)
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"time"
})
print
(
"esmm data ok"
)
print
(
df
.
head
(
2
))
df
=
df
.
fillna
(
"na"
)
print
(
df
.
count
())
ucity_id
=
{
v
:
i
for
i
,
v
in
df
[
"ucity_id"
]
.
unique
()}
clevel1_id
=
{
v
:
i
for
i
,
v
in
df
[
"clevel1_id"
]
.
unique
()}
ccity_name
=
{
v
:
i
for
i
,
v
in
df
[
"ccity_name"
]
.
unique
()}
device_type
=
{
v
:
i
for
i
,
v
in
df
[
"device_type"
]
.
unique
()}
manufacturer
=
{
v
:
i
for
i
,
v
in
df
[
"manufacturer"
]
.
unique
()}
channel
=
{
v
:
i
for
i
,
v
in
df
[
"channel"
]
.
unique
()}
top
=
{
v
:
i
for
i
,
v
in
df
[
"top"
]
.
unique
()}
time
=
{
v
:
i
for
i
,
v
in
df
[
"time"
]
.
unique
()}
df
[
"ucity_id"
]
=
df
[
"ucity_id"
]
.
map
(
ucity_id
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
map
(
clevel1_id
)
df
[
"ccity_name"
]
=
df
[
"ccity_name"
]
.
map
(
ccity_name
)
df
[
"device_type"
]
=
df
[
"device_type"
]
.
map
(
device_type
)
df
[
"manufacturer"
]
=
df
[
"manufacturer"
]
.
map
(
manufacturer
)
df
[
"channel"
]
=
df
[
"channel"
]
.
map
(
channel
)
df
[
"top"
]
=
df
[
"top"
]
.
map
(
top
)
df
[
"time"
]
=
df
[
"time"
]
.
map
(
time
)
train
=
df
.
loc
[
df
[
"stat_date"
]
==
validate_date
]
test
=
df
.
loc
[
df
[
"stat_date"
]
!=
validate_date
]
features
=
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
]
train_values
=
train
[
features
]
.
values
train_labels
=
train
[[
"y"
,
"z"
]]
.
values
test_values
=
test
[
features
]
.
values
test_labels
=
test
[[
"y"
,
"z"
]]
.
values
ucity_id_max
=
len
(
ucity_id
)
clevel1_id_max
=
len
(
clevel1_id
)
ccity_name_max
=
len
(
ccity_name
)
device_type_max
=
len
(
device_type
)
manufacturer_max
=
len
(
manufacturer
)
channel_max
=
len
(
channel
)
top_max
=
len
(
top
)
time_max
=
len
(
time
)
return
train_values
,
train_labels
,
test_values
,
test_labels
,
ucity_id_max
,
clevel1_id_max
,
ccity_name_max
,
\
device_type_max
,
manufacturer_max
,
channel_max
,
top_max
,
time_max
def
get_inputs
():
ucity_id
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"ucity_id"
)
clevel1_id
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"clevel1_id"
)
ccity_name
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"ccity_name"
)
device_type
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"device_type"
)
manufacturer
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"manufacturer"
)
channel
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"channel"
)
top
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"top"
)
time
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"time"
)
targets
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
2
],
name
=
"targets"
)
LearningRate
=
tf
.
placeholder
(
tf
.
float32
,
name
=
"LearningRate"
)
return
ucity_id
,
clevel1_id
,
ccity_name
,
device_type
,
manufacturer
,
channel
,
top
,
time
,
targets
,
LearningRate
def
define_embedding_layers
(
combiner
,
embed_dim
,
ucity_id
,
ucity_id_max
,
clevel1_id_max
,
clevel1_id
,
ccity_name_max
,
ccity_name
,
device_type_max
,
device_type
,
manufacturer_max
,
manufacturer
,
channel
,
channel_max
,
top
,
top_max
,
time
,
time_max
):
ucity_id_embed_matrix
=
tf
.
Variable
(
tf
.
random_normal
([
ucity_id_max
,
embed_dim
],
0
,
0.001
))
ucity_id_embed_layer
=
tf
.
nn
.
embedding_lookup
(
ucity_id_embed_matrix
,
ucity_id
)
if
combiner
==
"sum"
:
ucity_id_embed_layer
=
tf
.
reduce_sum
(
ucity_id_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
clevel1_id_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
clevel1_id_max
,
embed_dim
],
0
,
0.001
))
clevel1_id_embed_layer
=
tf
.
nn
.
embedding_lookup
(
clevel1_id_embed_matrix
,
clevel1_id
)
if
combiner
==
"sum"
:
clevel1_id_embed_layer
=
tf
.
reduce_sum
(
clevel1_id_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
ccity_name_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
ccity_name_max
,
embed_dim
],
0
,
0.001
))
ccity_name_embed_layer
=
tf
.
nn
.
embedding_lookup
(
ccity_name_embed_matrix
,
ccity_name
)
if
combiner
==
"sum"
:
ccity_name_embed_layer
=
tf
.
reduce_sum
(
ccity_name_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
device_type_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
device_type_max
,
embed_dim
],
0
,
0.001
))
device_type_embed_layer
=
tf
.
nn
.
embedding_lookup
(
device_type_embed_matrix
,
device_type
)
if
combiner
==
"sum"
:
device_type_embed_layer
=
tf
.
reduce_sum
(
device_type_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
manufacturer_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
manufacturer_max
,
embed_dim
],
0
,
0.001
))
manufacturer_embed_layer
=
tf
.
nn
.
embedding_lookup
(
manufacturer_embed_matrix
,
manufacturer
)
if
combiner
==
"sum"
:
manufacturer_embed_layer
=
tf
.
reduce_sum
(
manufacturer_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
channel_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
channel_max
,
embed_dim
],
0
,
0.001
))
channel_embed_layer
=
tf
.
nn
.
embedding_lookup
(
channel_embed_matrix
,
channel
)
if
combiner
==
"sum"
:
channel_embed_layer
=
tf
.
reduce_sum
(
channel_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
top_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
top_max
,
embed_dim
],
0
,
0.001
))
top_embed_layer
=
tf
.
nn
.
embedding_lookup
(
top_embed_matrix
,
top
)
if
combiner
==
"sum"
:
top_embed_layer
=
tf
.
reduce_sum
(
top_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
time_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
time_max
,
embed_dim
],
0
,
0.001
))
time_embed_layer
=
tf
.
nn
.
embedding_lookup
(
time_embed_matrix
,
time
)
if
combiner
==
"sum"
:
time_embed_layer
=
tf
.
reduce_sum
(
time_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
esmm_embedding_layer
=
tf
.
concat
([
ucity_id_embed_layer
,
clevel1_id_embed_layer
,
ccity_name_embed_layer
,
device_type_embed_layer
,
manufacturer_embed_layer
,
channel_embed_layer
,
top_embed_layer
,
time_embed_layer
],
axis
=
1
)
esmm_embedding_layer
=
tf
.
reshape
(
esmm_embedding_layer
,
[
-
1
,
embed_dim
*
8
])
return
esmm_embedding_layer
def
define_ctr_layer
(
esmm_embedding_layer
):
ctr_layer_1
=
tf
.
layers
.
dense
(
esmm_embedding_layer
,
200
,
activation
=
tf
.
nn
.
relu
)
ctr_layer_2
=
tf
.
layers
.
dense
(
ctr_layer_1
,
80
,
activation
=
tf
.
nn
.
relu
)
ctr_layer_3
=
tf
.
layers
.
dense
(
ctr_layer_2
,
2
)
# [nonclick, click]
ctr_prob
=
tf
.
nn
.
softmax
(
ctr_layer_3
)
+
0.00000001
return
ctr_prob
def
define_cvr_layer
(
esmm_embedding_layer
):
cvr_layer_1
=
tf
.
layers
.
dense
(
esmm_embedding_layer
,
200
,
activation
=
tf
.
nn
.
relu
)
cvr_layer_2
=
tf
.
layers
.
dense
(
cvr_layer_1
,
80
,
activation
=
tf
.
nn
.
relu
)
cvr_layer_3
=
tf
.
layers
.
dense
(
cvr_layer_2
,
2
)
# [nonbuy, buy]
cvr_prob
=
tf
.
nn
.
softmax
(
cvr_layer_3
)
+
0.00000001
return
cvr_prob
def
define_ctr_cvr_layer
(
esmm_embedding_layer
):
layer_1
=
tf
.
layers
.
dense
(
esmm_embedding_layer
,
128
,
activation
=
tf
.
nn
.
relu
)
layer_2
=
tf
.
layers
.
dense
(
layer_1
,
16
,
activation
=
tf
.
nn
.
relu
)
layer_3
=
tf
.
layers
.
dense
(
layer_2
,
2
)
ctr_prob
=
tf
.
nn
.
softmax
(
layer_3
)
+
0.00000001
cvr_prob
=
tf
.
nn
.
softmax
(
layer_3
)
+
0.00000001
return
ctr_prob
,
cvr_prob
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
apps_number
,
app_list_map
=
multi_hot
(
df
,
"app_list"
,
1
)
level2_number
,
leve2_map
=
multi_hot
(
df
,
"level2_ids"
,
1
+
apps_number
)
level3_number
,
leve3_map
=
multi_hot
(
df
,
"level3_ids"
,
1
+
apps_number
+
level2_number
)
unique_values
=
[]
for
i
in
features
:
unique_values
.
extend
(
df
.
select
(
i
)
.
distinct
()
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
())
temp
=
list
(
range
(
2
+
apps_number
+
level2_number
+
level3_number
,
2
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
.
rdd
rdd
.
persist
()
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
\
.
map
(
lambda
x
:
(
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
print
(
"train tfrecord done"
)
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
\
.
map
(
lambda
x
:
(
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
def
get_predict
(
date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
):
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_pre_data e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id"
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.train_Knowledge_network_data k on feat.level2 = k.level2_id"
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
df
=
spark
.
sql
(
sql
)
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
\
.
rdd
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
app_list_func
(
x
[
13
],
leve2_map
),
app_list_func
(
x
[
14
],
leve2_map
),
app_list_func
(
x
[
15
],
leve2_map
),
[
value_map
.
get
(
date
,
299999
),
value_map
.
get
(
x
[
16
],
299998
),
value_map
.
get
(
x
[
17
],
299997
),
value_map
.
get
(
x
[
18
],
299996
),
value_map
.
get
(
x
[
19
],
299995
),
value_map
.
get
(
x
[
20
],
299994
),
value_map
.
get
(
x
[
21
],
299993
),
value_map
.
get
(
x
[
22
],
299992
),
value_map
.
get
(
x
[
23
],
299991
),
value_map
.
get
(
x
[
24
],
299990
),
value_map
.
get
(
x
[
25
],
299989
),
value_map
.
get
(
x
[
26
],
299988
),
value_map
.
get
(
x
[
27
],
299987
),
value_map
.
get
(
x
[
28
],
299986
),
value_map
.
get
(
x
[
29
],
299985
)
]))
rdd
.
persist
()
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"native.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"native/"
,
mode
=
"overwrite"
)
print
(
"native tfrecord done"
)
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"nearby csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"nearby.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# nearby_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"nearby/",header = 'true')
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"nearby/"
,
mode
=
"overwrite"
)
print
(
"nearby tfrecord done"
)
rdd
.
unpersist
()
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
db
.
close
()
return
df
if
__name__
==
'__main__'
:
embed_dim
=
6
combiner
=
"sum"
train_values
,
train_labels
,
test_values
,
test_labels
,
ucity_id_max
,
clevel1_id_max
,
ccity_name_max
,
\
device_type_max
,
manufacturer_max
,
channel_max
,
top_max
,
time_max
=
get_data
()
tf
.
reset_default_graph
()
train_graph
=
tf
.
Graph
()
with
train_graph
.
as_default
():
ucity_id
,
clevel1_id
,
ccity_name
,
device_type
,
manufacturer
,
channel
,
top
,
\
time
,
targets
,
LearningRate
=
get_inputs
()
esmm_embedding_layer
=
define_embedding_layers
(
combiner
,
embed_dim
,
ucity_id
,
ucity_id_max
,
clevel1_id_max
,
clevel1_id
,
ccity_name_max
,
ccity_name
,
device_type_max
,
device_type
,
manufacturer_max
,
manufacturer
,
channel
,
channel_max
,
top
,
top_max
,
time
,
time_max
)
ctr_prob
,
cvr_prob
=
define_ctr_cvr_layer
(
esmm_embedding_layer
)
with
tf
.
name_scope
(
"loss"
):
ctr_prob_one
=
tf
.
slice
(
ctr_prob
,
[
0
,
1
],
[
-
1
,
1
])
# [batch_size , 1]
cvr_prob_one
=
tf
.
slice
(
cvr_prob
,
[
0
,
1
],
[
-
1
,
1
])
# [batchsize, 1 ]
ctcvr_prob_one
=
ctr_prob_one
*
cvr_prob_one
# [ctr*cvr]
ctcvr_prob
=
tf
.
concat
([
1
-
ctcvr_prob_one
,
ctcvr_prob_one
],
axis
=
1
)
ctr_label
=
tf
.
slice
(
targets
,
[
0
,
0
],
[
-
1
,
1
])
# target: [click, buy]
ctr_label
=
tf
.
concat
([
1
-
ctr_label
,
ctr_label
],
axis
=
1
)
# [1-click, click]
cvr_label
=
tf
.
slice
(
targets
,
[
0
,
1
],
[
-
1
,
1
])
ctcvr_label
=
tf
.
concat
([
1
-
cvr_label
,
cvr_label
],
axis
=
1
)
# 单列,判断Click是否=1
ctr_clk
=
tf
.
slice
(
targets
,
[
0
,
0
],
[
-
1
,
1
])
ctr_clk_dup
=
tf
.
concat
([
ctr_clk
,
ctr_clk
],
axis
=
1
)
# clicked subset CVR loss
cvr_loss
=
-
tf
.
multiply
(
tf
.
log
(
cvr_prob
)
*
ctcvr_label
,
ctr_clk_dup
)
# batch CTR loss
ctr_loss
=
-
tf
.
log
(
ctr_prob
)
*
ctr_label
# -y*log(p)-(1-y)*log(1-p)
# batch CTCVR loss
ctcvr_loss
=
-
tf
.
log
(
ctcvr_prob
)
*
ctcvr_label
# loss = tf.reduce_mean(ctr_loss + ctcvr_loss + cvr_loss)
# loss = tf.reduce_mean(ctr_loss + ctcvr_loss)
# loss = tf.reduce_mean(ctr_loss + cvr_loss)
loss
=
tf
.
reduce_mean
(
cvr_loss
)
ctr_loss
=
tf
.
reduce_mean
(
ctr_loss
)
cvr_loss
=
tf
.
reduce_mean
(
cvr_loss
)
ctcvr_loss
=
tf
.
reduce_mean
(
ctcvr_loss
)
# 优化损失
# train_op = tf.train.AdamOptimizer(lr).minimize(loss) #cost
global_step
=
tf
.
Variable
(
0
,
name
=
"global_step"
,
trainable
=
False
)
optimizer
=
tf
.
train
.
AdamOptimizer
(
lr
)
gradients
=
optimizer
.
compute_gradients
(
loss
)
# cost
train_op
=
optimizer
.
apply_gradients
(
gradients
,
global_step
=
global_step
)
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
"false"
)
\
.
set
(
"spark.tispark.plan.allow_index_read"
,
"true"
)
\
.
set
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
\
.
set
(
"spark.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
.
set
(
"spark.io.compression.codec"
,
"lzf"
)
\
.
set
(
"spark.driver.maxResultSize"
,
"8g"
)
.
set
(
"spark.sql.avro.compression.codec"
,
"snappy"
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
ti
=
pti
.
TiContext
(
spark
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
ti
.
tidbMapDatabase
(
"eagle"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
tensnsorflow/multi.py
View file @
b4bfaa68
...
...
@@ -17,7 +17,6 @@ def app_list_func(x,l):
else
:
e
.
append
(
0
)
return
e
# return ",".join([str(j) for j in e])
def
multi_hot
(
df
,
column
,
n
):
...
...
@@ -32,7 +31,7 @@ def multi_hot(df,column,n):
return
number
,
app_list_map
def
feature
_engineer
():
def
feature
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
...
...
@@ -99,9 +98,9 @@ def get_predict(date,value_map,app_list_map):
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
4
]
==
0
)
.
map
(
lambda
x
:(
x
[
1
],
x
[
2
],
x
[
3
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native"
)
#
native_pre.toPandas().to_csv(local_path+"native.csv", header=True)
native_pre
.
coalesce
(
1
)
.
write
.
format
(
'com.databricks.spark.csv'
)
.
save
(
path
+
"hello.csv
"
,
header
=
'true'
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"native.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/
",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
4
]
==
0
)
.
map
(
lambda
x
:
(
x
[
0
],
x
[
5
],
x
[
6
],
x
[
7
])))
\
...
...
@@ -145,7 +144,7 @@ if __name__ == '__main__':
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
=
feature
_engineer
()
validate_date
,
value_map
,
app_list_map
=
feature
()
get_predict
(
validate_date
,
value_map
,
app_list_map
)
# df = spark.read.format("tfrecords").option("recordType", "Example").load("/strategy/va.tfrecord")
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment