Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
b4bfaa68
Commit
b4bfaa68
authored
5 years ago
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
7eb0395f
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
232 additions
and
216 deletions
+232
-216
feature_engineering.py
tensnsorflow/feature_engineering.py
+227
-210
multi.py
tensnsorflow/multi.py
+5
-6
No files found.
tensnsorflow/feature_engineering.py
View file @
b4bfaa68
import
pandas
as
pd
# -*- coding: utf-8 -*-
import
pymysql
from
pyspark.conf
import
SparkConf
import
pytispark.pytispark
as
pti
from
pyspark.sql
import
SparkSession
import
datetime
import
tensorflow
as
tf
import
pandas
as
pd
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
finally
:
db
.
close
()
return
df
def
app_list_func
(
x
,
l
):
b
=
str
(
x
)
.
split
(
","
)
e
=
[]
for
i
in
b
:
if
i
in
l
.
keys
():
e
.
append
(
l
[
i
])
else
:
e
.
append
(
0
)
return
e
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
def
multi_hot
(
df
,
column
,
n
):
v
=
df
.
select
(
column
)
.
distinct
()
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
()
app_list_value
=
[
str
(
i
)
.
split
(
","
)
for
i
in
v
]
app_list_unique
=
[]
for
i
in
app_list_value
:
app_list_unique
.
extend
(
i
)
app_list_unique
=
list
(
set
(
app_list_unique
))
number
=
len
(
app_list_unique
)
app_list_map
=
dict
(
zip
(
app_list_unique
,
list
(
range
(
n
,
number
+
n
))))
return
number
,
app_list_map
def
feature_engineer
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
30
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
2
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,cid_time.time "
\
"from esmm_train_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id left join cid_time on e.cid_id = cid_time.cid_id "
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_train_data e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.train_Knowledge_network_data k on feat.level2 = k.level2_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id"
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
con_sql
(
db
,
sql
)
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel1_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"time"
})
print
(
"esmm data ok"
)
print
(
df
.
head
(
2
))
df
=
df
.
fillna
(
"na"
)
print
(
df
.
count
())
ucity_id
=
{
v
:
i
for
i
,
v
in
df
[
"ucity_id"
]
.
unique
()}
clevel1_id
=
{
v
:
i
for
i
,
v
in
df
[
"clevel1_id"
]
.
unique
()}
ccity_name
=
{
v
:
i
for
i
,
v
in
df
[
"ccity_name"
]
.
unique
()}
device_type
=
{
v
:
i
for
i
,
v
in
df
[
"device_type"
]
.
unique
()}
manufacturer
=
{
v
:
i
for
i
,
v
in
df
[
"manufacturer"
]
.
unique
()}
channel
=
{
v
:
i
for
i
,
v
in
df
[
"channel"
]
.
unique
()}
top
=
{
v
:
i
for
i
,
v
in
df
[
"top"
]
.
unique
()}
time
=
{
v
:
i
for
i
,
v
in
df
[
"time"
]
.
unique
()}
df
[
"ucity_id"
]
=
df
[
"ucity_id"
]
.
map
(
ucity_id
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
map
(
clevel1_id
)
df
[
"ccity_name"
]
=
df
[
"ccity_name"
]
.
map
(
ccity_name
)
df
[
"device_type"
]
=
df
[
"device_type"
]
.
map
(
device_type
)
df
[
"manufacturer"
]
=
df
[
"manufacturer"
]
.
map
(
manufacturer
)
df
[
"channel"
]
=
df
[
"channel"
]
.
map
(
channel
)
df
[
"top"
]
=
df
[
"top"
]
.
map
(
top
)
df
[
"time"
]
=
df
[
"time"
]
.
map
(
time
)
train
=
df
.
loc
[
df
[
"stat_date"
]
==
validate_date
]
test
=
df
.
loc
[
df
[
"stat_date"
]
!=
validate_date
]
features
=
[
"ucity_id"
,
"clevel1_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
]
train_values
=
train
[
features
]
.
values
train_labels
=
train
[[
"y"
,
"z"
]]
.
values
test_values
=
test
[
features
]
.
values
test_labels
=
test
[[
"y"
,
"z"
]]
.
values
ucity_id_max
=
len
(
ucity_id
)
clevel1_id_max
=
len
(
clevel1_id
)
ccity_name_max
=
len
(
ccity_name
)
device_type_max
=
len
(
device_type
)
manufacturer_max
=
len
(
manufacturer
)
channel_max
=
len
(
channel
)
top_max
=
len
(
top
)
time_max
=
len
(
time
)
return
train_values
,
train_labels
,
test_values
,
test_labels
,
ucity_id_max
,
clevel1_id_max
,
ccity_name_max
,
\
device_type_max
,
manufacturer_max
,
channel_max
,
top_max
,
time_max
def
get_inputs
():
ucity_id
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"ucity_id"
)
clevel1_id
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"clevel1_id"
)
ccity_name
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"ccity_name"
)
device_type
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"device_type"
)
manufacturer
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"manufacturer"
)
channel
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"channel"
)
top
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"top"
)
time
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
1
],
name
=
"time"
)
targets
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
2
],
name
=
"targets"
)
LearningRate
=
tf
.
placeholder
(
tf
.
float32
,
name
=
"LearningRate"
)
return
ucity_id
,
clevel1_id
,
ccity_name
,
device_type
,
manufacturer
,
channel
,
top
,
time
,
targets
,
LearningRate
def
define_embedding_layers
(
combiner
,
embed_dim
,
ucity_id
,
ucity_id_max
,
clevel1_id_max
,
clevel1_id
,
ccity_name_max
,
ccity_name
,
device_type_max
,
device_type
,
manufacturer_max
,
manufacturer
,
channel
,
channel_max
,
top
,
top_max
,
time
,
time_max
):
ucity_id_embed_matrix
=
tf
.
Variable
(
tf
.
random_normal
([
ucity_id_max
,
embed_dim
],
0
,
0.001
))
ucity_id_embed_layer
=
tf
.
nn
.
embedding_lookup
(
ucity_id_embed_matrix
,
ucity_id
)
if
combiner
==
"sum"
:
ucity_id_embed_layer
=
tf
.
reduce_sum
(
ucity_id_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
clevel1_id_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
clevel1_id_max
,
embed_dim
],
0
,
0.001
))
clevel1_id_embed_layer
=
tf
.
nn
.
embedding_lookup
(
clevel1_id_embed_matrix
,
clevel1_id
)
if
combiner
==
"sum"
:
clevel1_id_embed_layer
=
tf
.
reduce_sum
(
clevel1_id_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
ccity_name_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
ccity_name_max
,
embed_dim
],
0
,
0.001
))
ccity_name_embed_layer
=
tf
.
nn
.
embedding_lookup
(
ccity_name_embed_matrix
,
ccity_name
)
if
combiner
==
"sum"
:
ccity_name_embed_layer
=
tf
.
reduce_sum
(
ccity_name_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
device_type_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
device_type_max
,
embed_dim
],
0
,
0.001
))
device_type_embed_layer
=
tf
.
nn
.
embedding_lookup
(
device_type_embed_matrix
,
device_type
)
if
combiner
==
"sum"
:
device_type_embed_layer
=
tf
.
reduce_sum
(
device_type_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
manufacturer_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
manufacturer_max
,
embed_dim
],
0
,
0.001
))
manufacturer_embed_layer
=
tf
.
nn
.
embedding_lookup
(
manufacturer_embed_matrix
,
manufacturer
)
if
combiner
==
"sum"
:
manufacturer_embed_layer
=
tf
.
reduce_sum
(
manufacturer_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
channel_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
channel_max
,
embed_dim
],
0
,
0.001
))
channel_embed_layer
=
tf
.
nn
.
embedding_lookup
(
channel_embed_matrix
,
channel
)
if
combiner
==
"sum"
:
channel_embed_layer
=
tf
.
reduce_sum
(
channel_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
top_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
top_max
,
embed_dim
],
0
,
0.001
))
top_embed_layer
=
tf
.
nn
.
embedding_lookup
(
top_embed_matrix
,
top
)
if
combiner
==
"sum"
:
top_embed_layer
=
tf
.
reduce_sum
(
top_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
time_embed_matrix
=
tf
.
Variable
(
tf
.
random_uniform
([
time_max
,
embed_dim
],
0
,
0.001
))
time_embed_layer
=
tf
.
nn
.
embedding_lookup
(
time_embed_matrix
,
time
)
if
combiner
==
"sum"
:
time_embed_layer
=
tf
.
reduce_sum
(
time_embed_layer
,
axis
=
1
,
keep_dims
=
True
)
esmm_embedding_layer
=
tf
.
concat
([
ucity_id_embed_layer
,
clevel1_id_embed_layer
,
ccity_name_embed_layer
,
device_type_embed_layer
,
manufacturer_embed_layer
,
channel_embed_layer
,
top_embed_layer
,
time_embed_layer
],
axis
=
1
)
esmm_embedding_layer
=
tf
.
reshape
(
esmm_embedding_layer
,
[
-
1
,
embed_dim
*
8
])
return
esmm_embedding_layer
def
define_ctr_layer
(
esmm_embedding_layer
):
ctr_layer_1
=
tf
.
layers
.
dense
(
esmm_embedding_layer
,
200
,
activation
=
tf
.
nn
.
relu
)
ctr_layer_2
=
tf
.
layers
.
dense
(
ctr_layer_1
,
80
,
activation
=
tf
.
nn
.
relu
)
ctr_layer_3
=
tf
.
layers
.
dense
(
ctr_layer_2
,
2
)
# [nonclick, click]
ctr_prob
=
tf
.
nn
.
softmax
(
ctr_layer_3
)
+
0.00000001
return
ctr_prob
def
define_cvr_layer
(
esmm_embedding_layer
):
cvr_layer_1
=
tf
.
layers
.
dense
(
esmm_embedding_layer
,
200
,
activation
=
tf
.
nn
.
relu
)
cvr_layer_2
=
tf
.
layers
.
dense
(
cvr_layer_1
,
80
,
activation
=
tf
.
nn
.
relu
)
cvr_layer_3
=
tf
.
layers
.
dense
(
cvr_layer_2
,
2
)
# [nonbuy, buy]
cvr_prob
=
tf
.
nn
.
softmax
(
cvr_layer_3
)
+
0.00000001
return
cvr_prob
def
define_ctr_cvr_layer
(
esmm_embedding_layer
):
layer_1
=
tf
.
layers
.
dense
(
esmm_embedding_layer
,
128
,
activation
=
tf
.
nn
.
relu
)
layer_2
=
tf
.
layers
.
dense
(
layer_1
,
16
,
activation
=
tf
.
nn
.
relu
)
layer_3
=
tf
.
layers
.
dense
(
layer_2
,
2
)
ctr_prob
=
tf
.
nn
.
softmax
(
layer_3
)
+
0.00000001
cvr_prob
=
tf
.
nn
.
softmax
(
layer_3
)
+
0.00000001
return
ctr_prob
,
cvr_prob
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
apps_number
,
app_list_map
=
multi_hot
(
df
,
"app_list"
,
1
)
level2_number
,
leve2_map
=
multi_hot
(
df
,
"level2_ids"
,
1
+
apps_number
)
level3_number
,
leve3_map
=
multi_hot
(
df
,
"level3_ids"
,
1
+
apps_number
+
level2_number
)
unique_values
=
[]
for
i
in
features
:
unique_values
.
extend
(
df
.
select
(
i
)
.
distinct
()
.
rdd
.
map
(
lambda
x
:
x
[
0
])
.
collect
())
temp
=
list
(
range
(
2
+
apps_number
+
level2_number
+
level3_number
,
2
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
.
rdd
rdd
.
persist
()
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
\
.
map
(
lambda
x
:
(
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
print
(
"train tfrecord done"
)
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
\
.
map
(
lambda
x
:
(
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
def
get_predict
(
date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
):
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_pre_data e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id"
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.train_Knowledge_network_data k on feat.level2 = k.level2_id"
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
df
=
spark
.
sql
(
sql
)
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
\
.
rdd
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
app_list_func
(
x
[
13
],
leve2_map
),
app_list_func
(
x
[
14
],
leve2_map
),
app_list_func
(
x
[
15
],
leve2_map
),
[
value_map
.
get
(
date
,
299999
),
value_map
.
get
(
x
[
16
],
299998
),
value_map
.
get
(
x
[
17
],
299997
),
value_map
.
get
(
x
[
18
],
299996
),
value_map
.
get
(
x
[
19
],
299995
),
value_map
.
get
(
x
[
20
],
299994
),
value_map
.
get
(
x
[
21
],
299993
),
value_map
.
get
(
x
[
22
],
299992
),
value_map
.
get
(
x
[
23
],
299991
),
value_map
.
get
(
x
[
24
],
299990
),
value_map
.
get
(
x
[
25
],
299989
),
value_map
.
get
(
x
[
26
],
299988
),
value_map
.
get
(
x
[
27
],
299987
),
value_map
.
get
(
x
[
28
],
299986
),
value_map
.
get
(
x
[
29
],
299985
)
]))
rdd
.
persist
()
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"native.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"native/"
,
mode
=
"overwrite"
)
print
(
"native tfrecord done"
)
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"nearby csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"nearby.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# nearby_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"nearby/",header = 'true')
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
.
coalesce
(
1
)
.
write
.
format
(
"tfrecords"
)
\
.
save
(
path
=
path
+
"nearby/"
,
mode
=
"overwrite"
)
print
(
"nearby tfrecord done"
)
rdd
.
unpersist
()
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
db
.
close
()
return
df
if
__name__
==
'__main__'
:
embed_dim
=
6
combiner
=
"sum"
train_values
,
train_labels
,
test_values
,
test_labels
,
ucity_id_max
,
clevel1_id_max
,
ccity_name_max
,
\
device_type_max
,
manufacturer_max
,
channel_max
,
top_max
,
time_max
=
get_data
()
tf
.
reset_default_graph
()
train_graph
=
tf
.
Graph
()
with
train_graph
.
as_default
():
ucity_id
,
clevel1_id
,
ccity_name
,
device_type
,
manufacturer
,
channel
,
top
,
\
time
,
targets
,
LearningRate
=
get_inputs
()
esmm_embedding_layer
=
define_embedding_layers
(
combiner
,
embed_dim
,
ucity_id
,
ucity_id_max
,
clevel1_id_max
,
clevel1_id
,
ccity_name_max
,
ccity_name
,
device_type_max
,
device_type
,
manufacturer_max
,
manufacturer
,
channel
,
channel_max
,
top
,
top_max
,
time
,
time_max
)
ctr_prob
,
cvr_prob
=
define_ctr_cvr_layer
(
esmm_embedding_layer
)
with
tf
.
name_scope
(
"loss"
):
ctr_prob_one
=
tf
.
slice
(
ctr_prob
,
[
0
,
1
],
[
-
1
,
1
])
# [batch_size , 1]
cvr_prob_one
=
tf
.
slice
(
cvr_prob
,
[
0
,
1
],
[
-
1
,
1
])
# [batchsize, 1 ]
ctcvr_prob_one
=
ctr_prob_one
*
cvr_prob_one
# [ctr*cvr]
ctcvr_prob
=
tf
.
concat
([
1
-
ctcvr_prob_one
,
ctcvr_prob_one
],
axis
=
1
)
ctr_label
=
tf
.
slice
(
targets
,
[
0
,
0
],
[
-
1
,
1
])
# target: [click, buy]
ctr_label
=
tf
.
concat
([
1
-
ctr_label
,
ctr_label
],
axis
=
1
)
# [1-click, click]
cvr_label
=
tf
.
slice
(
targets
,
[
0
,
1
],
[
-
1
,
1
])
ctcvr_label
=
tf
.
concat
([
1
-
cvr_label
,
cvr_label
],
axis
=
1
)
# 单列,判断Click是否=1
ctr_clk
=
tf
.
slice
(
targets
,
[
0
,
0
],
[
-
1
,
1
])
ctr_clk_dup
=
tf
.
concat
([
ctr_clk
,
ctr_clk
],
axis
=
1
)
# clicked subset CVR loss
cvr_loss
=
-
tf
.
multiply
(
tf
.
log
(
cvr_prob
)
*
ctcvr_label
,
ctr_clk_dup
)
# batch CTR loss
ctr_loss
=
-
tf
.
log
(
ctr_prob
)
*
ctr_label
# -y*log(p)-(1-y)*log(1-p)
# batch CTCVR loss
ctcvr_loss
=
-
tf
.
log
(
ctcvr_prob
)
*
ctcvr_label
# loss = tf.reduce_mean(ctr_loss + ctcvr_loss + cvr_loss)
# loss = tf.reduce_mean(ctr_loss + ctcvr_loss)
# loss = tf.reduce_mean(ctr_loss + cvr_loss)
loss
=
tf
.
reduce_mean
(
cvr_loss
)
ctr_loss
=
tf
.
reduce_mean
(
ctr_loss
)
cvr_loss
=
tf
.
reduce_mean
(
cvr_loss
)
ctcvr_loss
=
tf
.
reduce_mean
(
ctcvr_loss
)
# 优化损失
# train_op = tf.train.AdamOptimizer(lr).minimize(loss) #cost
global_step
=
tf
.
Variable
(
0
,
name
=
"global_step"
,
trainable
=
False
)
optimizer
=
tf
.
train
.
AdamOptimizer
(
lr
)
gradients
=
optimizer
.
compute_gradients
(
loss
)
# cost
train_op
=
optimizer
.
apply_gradients
(
gradients
,
global_step
=
global_step
)
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
"false"
)
\
.
set
(
"spark.tispark.plan.allow_index_read"
,
"true"
)
\
.
set
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
\
.
set
(
"spark.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
.
set
(
"spark.io.compression.codec"
,
"lzf"
)
\
.
set
(
"spark.driver.maxResultSize"
,
"8g"
)
.
set
(
"spark.sql.avro.compression.codec"
,
"snappy"
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
ti
=
pti
.
TiContext
(
spark
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
ti
.
tidbMapDatabase
(
"eagle"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
This diff is collapsed.
Click to expand it.
tensnsorflow/multi.py
View file @
b4bfaa68
...
...
@@ -17,7 +17,6 @@ def app_list_func(x,l):
else
:
e
.
append
(
0
)
return
e
# return ",".join([str(j) for j in e])
def
multi_hot
(
df
,
column
,
n
):
...
...
@@ -32,7 +31,7 @@ def multi_hot(df,column,n):
return
number
,
app_list_map
def
feature
_engineer
():
def
feature
():
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
...
...
@@ -99,9 +98,9 @@ def get_predict(date,value_map,app_list_map):
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
4
]
==
0
)
.
map
(
lambda
x
:(
x
[
1
],
x
[
2
],
x
[
3
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native"
)
#
native_pre.toPandas().to_csv(local_path+"native.csv", header=True)
native_pre
.
coalesce
(
1
)
.
write
.
format
(
'com.databricks.spark.csv'
)
.
save
(
path
+
"hello.csv
"
,
header
=
'true'
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"native.csv"
,
header
=
True
)
# TODO 写成csv文件改成下面这样
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/
",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
4
]
==
0
)
.
map
(
lambda
x
:
(
x
[
0
],
x
[
5
],
x
[
6
],
x
[
7
])))
\
...
...
@@ -145,7 +144,7 @@ if __name__ == '__main__':
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
=
feature
_engineer
()
validate_date
,
value_map
,
app_list_map
=
feature
()
get_predict
(
validate_date
,
value_map
,
app_list_map
)
# df = spark.read.format("tfrecords").option("recordType", "Example").load("/strategy/va.tfrecord")
...
...
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment