Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
bbe711f9
Commit
bbe711f9
authored
May 24, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
cd12f281
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
43 additions
and
41 deletions
+43
-41
feature_engineering.py
tensnsorflow/feature_engineering.py
+43
-41
No files found.
tensnsorflow/feature_engineering.py
View file @
bbe711f9
...
...
@@ -75,7 +75,7 @@ def con_sql(db,sql):
return
df
def
feature_engineer
():
apps_number
,
app_list_map
,
level2_number
,
leve
l2_map
,
level3_number
,
level
3_map
=
get_map
()
apps_number
,
app_list_map
,
level2_number
,
leve
2_map
,
level3_number
,
leve
3_map
=
get_map
()
unique_values
=
[]
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select distinct stat_date from esmm_train_data_dur"
...
...
@@ -185,56 +185,56 @@ def feature_engineer():
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
.
rdd
.
repartition
(
200
)
\
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
level2_map
),
app_list_func
(
x
[
5
],
level3_map
),
app_list_func
(
x
[
6
],
level2_map
),
app_list_func
(
x
[
7
],
level2_map
),
app_list_func
(
x
[
8
],
level2_map
),
app_list_func
(
x
[
9
],
level2_map
),
app_list_func
(
x
[
10
],
level2_map
),
app_list_func
(
x
[
11
],
level2_map
),
app_list_func
(
x
[
12
],
level2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
d
=
time
.
time
()
rdd
.
persist
()
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
\
.
map
(
lambda
x
:(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
]))
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
train
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
!=
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
]))
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
print
(
"train tfrecord done"
)
print
((
h
-
d
)
/
60
)
print
((
h
-
f
)
/
60
)
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
\
.
map
(
lambda
x
:(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
]))
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
]))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
)
\
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
level2_map
,
level3_map
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
def
get_predict
():
def
get_predict
(
date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
):
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
...
...
@@ -256,7 +256,7 @@ def get_predict():
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.train_Knowledge_network_data k on feat.level2 = k.level2_id "
\
"limit 5000"
# TODO 把上面的limit 5000删除
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
...
...
@@ -265,19 +265,19 @@ def get_predict():
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
c
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
level
2_map
),
app_list_func
(
x
[
8
],
level3_map
),
app_list_func
(
x
[
9
],
level
2_map
),
app_list_func
(
x
[
10
],
level2_map
),
app_list_func
(
x
[
11
],
level
2_map
),
app_list_func
(
x
[
12
],
level2_map
),
app_list_func
(
x
[
13
],
level
2_map
),
app_list_func
(
x
[
14
],
level2_map
),
app_list_func
(
x
[
15
],
level
2_map
),
[
value_map
.
get
(
validate_date
,
299999
),
value_map
.
get
(
x
[
16
],
299998
),
value_map
.
get
(
x
[
17
],
299997
),
value_map
.
get
(
x
[
18
],
299996
),
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve
2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve
2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve
2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
app_list_func
(
x
[
13
],
leve
2_map
),
app_list_func
(
x
[
14
],
leve2_map
),
app_list_func
(
x
[
15
],
leve
2_map
),
[
value_map
.
get
(
date
,
299999
),
value_map
.
get
(
x
[
16
],
299998
),
value_map
.
get
(
x
[
17
],
299997
),
value_map
.
get
(
x
[
18
],
299996
),
value_map
.
get
(
x
[
19
],
299995
),
value_map
.
get
(
x
[
20
],
299994
),
value_map
.
get
(
x
[
21
],
299993
),
value_map
.
get
(
x
[
22
],
299992
),
value_map
.
get
(
x
[
23
],
299991
),
value_map
.
get
(
x
[
24
],
299990
),
...
...
@@ -285,6 +285,7 @@ def get_predict():
value_map
.
get
(
x
[
27
],
299987
),
value_map
.
get
(
x
[
28
],
299986
),
value_map
.
get
(
x
[
29
],
299985
)
]))
rdd
.
persist
()
d
=
time
.
time
()
print
(
"rdd"
)
...
...
@@ -343,8 +344,9 @@ if __name__ == '__main__':
path
=
"hdfs:///strategy/esmm/"
local_path
=
"/home/gmuser/esmm/"
validate_date
,
value_map
,
app_list_map
,
level2_map
,
level3_map
=
feature_engineer
()
get_predict
()
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
=
feature_engineer
()
get_predict
(
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment