Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
bf00e87c
Commit
bf00e87c
authored
Jun 25, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add test file
parent
72b1dd67
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
64 additions
and
61 deletions
+64
-61
multi.py
tensnsorflow/multi.py
+64
-61
No files found.
tensnsorflow/multi.py
View file @
bf00e87c
...
@@ -192,7 +192,8 @@ def feature_engineer():
...
@@ -192,7 +192,8 @@ def feature_engineer():
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"e.device_id,e.cid_id "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
...
@@ -211,66 +212,68 @@ def feature_engineer():
...
@@ -211,66 +212,68 @@ def feature_engineer():
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
"where e.stat_date >= '{}'"
.
format
(
start
)
# df = spark.sql(sql)
df
=
spark
.
sql
(
sql
)
#
# df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
# "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids",
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
# "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"])
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
#
# df = df.na.fill(dict(zip(features, features)))
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
#
# rdd = df.select("stat_date", "y", "z", "app_list", "level2_ids", "level3_ids",
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
# "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
# "ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
# "hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
# "maintain_time", "recover_time", "search_tag2", "search_tag3")\
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
# .rdd.repartition(200).map(
.
rdd
.
repartition
(
200
)
.
map
(
# lambda x: (x[0], float(x[1]), float(x[2]), app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
# app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map), app_list_func(x[7], leve2_map),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
# app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map), app_list_func(x[10], leve2_map),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
# app_list_func(x[11], leve2_map), app_list_func(x[12], leve2_map),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
# [value_map.get(x[0], 1), value_map.get(x[13], 2), value_map.get(x[14], 3), value_map.get(x[15], 4),
[
value_map
.
get
(
x
[
0
],
1
),
value_map
.
get
(
x
[
13
],
2
),
value_map
.
get
(
x
[
14
],
3
),
value_map
.
get
(
x
[
15
],
4
),
# value_map.get(x[16], 5), value_map.get(x[17], 6), value_map.get(x[18], 7), value_map.get(x[19], 8),
value_map
.
get
(
x
[
16
],
5
),
value_map
.
get
(
x
[
17
],
6
),
value_map
.
get
(
x
[
18
],
7
),
value_map
.
get
(
x
[
19
],
8
),
# value_map.get(x[20], 9), value_map.get(x[21], 10),
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
# value_map.get(x[22], 11), value_map.get(x[23], 12), value_map.get(x[24], 13),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
# value_map.get(x[25], 14), value_map.get(x[26], 15)],
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
# app_list_func(x[27], leve2_map), app_list_func(x[28], leve3_map)
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
29
],
x
[
30
]
# ))
))
#
#
# rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
#
# # TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
#
# train = rdd.map(
train
=
rdd
.
map
(
# lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
# x[10], x[11], x[12], x[13], x[14], x[15]))
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]))
# f = time.time()
f
=
time
.
time
()
# spark.createDataFrame(train).toDF("y", "z", "app_list", "level2_list", "level3_list",
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
# "tag1_list", "tag2_list", "tag3_list", "tag4_list",
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
# "tag5_list", "tag6_list", "tag7_list", "ids", "search_tag2_list","search_tag3_list") \
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
# .repartition(1).write.format("tfrecords").save(path=path + "tr/", mode="overwrite")
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
# h = time.time()
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
# print("train tfrecord done")
h
=
time
.
time
()
# print((h - f) / 60)
print
(
"train tfrecord done"
)
#
print
((
h
-
f
)
/
60
)
# print("训练集样本总量:")
# print(rdd.count())
print
(
"训练集样本总量:"
)
#
print
(
rdd
.
count
())
# get_pre_number()
#
get_pre_number
()
# test = rdd.filter(lambda x: x[0] == validate_date).map(
# lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
# x[10], x[11], x[12], x[13], x[14], x[15]))
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
#
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]))
# spark.createDataFrame(test).toDF("y", "z", "app_list", "level2_list", "level3_list",
# "tag1_list", "tag2_list", "tag3_list", "tag4_list",
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
# "tag5_list", "tag6_list", "tag7_list", "ids", "search_tag2_list","search_tag3_list") \
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
# .repartition(1).write.format("tfrecords").save(path=path + "va/", mode="overwrite")
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
#
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
# print("va tfrecord done")
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
#
# rdd.unpersist()
print
(
"va tfrecord done"
)
rdd
.
unpersist
()
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
return
validate_date
,
value_map
,
app_list_map
,
leve2_map
,
leve3_map
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment