Commit c113a6a8 authored by 张彦钊's avatar 张彦钊

add print

parent 0b7df7a5
...@@ -43,7 +43,7 @@ def test_con_sql(device_id): ...@@ -43,7 +43,7 @@ def test_con_sql(device_id):
megacity_queue = list(set(megacity_queue)&set(data_set_cid)) megacity_queue = list(set(megacity_queue)&set(data_set_cid))
db.close() db.close()
print("成功获取日记队列") # print("成功获取日记队列")
return native_queue, nearby_queue, nation_queue, megacity_queue return native_queue, nearby_queue, nation_queue, megacity_queue
else: else:
...@@ -64,7 +64,7 @@ def get_native_queue(device_id): ...@@ -64,7 +64,7 @@ def get_native_queue(device_id):
native_queue = list(map(lambda x:"diary|"+str(x),native_queue)) native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
native_queue = list(set(native_queue) & set(data_set_cid)) native_queue = list(set(native_queue) & set(data_set_cid))
db.close() db.close()
print("成功获取native_queue") # print("成功获取native_queue")
return native_queue return native_queue
else: else:
return None return None
...@@ -85,7 +85,7 @@ def feature_en(x_list, device_id): ...@@ -85,7 +85,7 @@ def feature_en(x_list, device_id):
data["minute"] = data["minute"].astype("category") data["minute"] = data["minute"].astype("category")
# 虽然预测y,但ffm转化需要y,并不影响预测结果 # 虽然预测y,但ffm转化需要y,并不影响预测结果
data["y"] = 0 data["y"] = 0
print("done 特征工程") # print("done 特征工程")
return data return data
...@@ -97,7 +97,7 @@ def transform_ffm_format(df,queue_name): ...@@ -97,7 +97,7 @@ def transform_ffm_format(df,queue_name):
data = ffm_format_pandas.transform(df) data = ffm_format_pandas.transform(df)
predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name) predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name)
data.to_csv(predict_file_name, index=False, header=None) data.to_csv(predict_file_name, index=False, header=None)
print("done ffm") # print("done ffm")
return predict_file_name return predict_file_name
...@@ -112,19 +112,19 @@ def predict(queue_name, x_list): ...@@ -112,19 +112,19 @@ def predict(queue_name, x_list):
ffm_model.predict(DIRECTORY_PATH + "model.out", ffm_model.predict(DIRECTORY_PATH + "model.out",
DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id,queue_name)) DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id,queue_name))
print("done predict") # print("done predict")
def save_result(queue_name, x_list): def save_result(queue_name, x_list):
score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id,queue_name), header=None) score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id,queue_name), header=None)
print(score_df) # print(score_df)
mm_scaler = MinMaxScaler() mm_scaler = MinMaxScaler()
mm_scaler.fit(score_df) mm_scaler.fit(score_df)
score_df = pd.DataFrame(mm_scaler.transform(score_df)) score_df = pd.DataFrame(mm_scaler.transform(score_df))
print("概率前十行:") # print("概率前十行:")
print(score_df) # print(score_df)
score_df = score_df.rename(columns={0: "score"}) score_df = score_df.rename(columns={0: "score"})
score_df["cid"] = x_list score_df["cid"] = x_list
...@@ -198,7 +198,7 @@ def update_sql_dairy_queue(queue_name, diary_id): ...@@ -198,7 +198,7 @@ def update_sql_dairy_queue(queue_name, diary_id):
sql = "update device_diary_queue set {}='{}' where device_id = '{}'".format(queue_name, diary_id, device_id) sql = "update device_diary_queue set {}='{}' where device_id = '{}'".format(queue_name, diary_id, device_id)
cursor.execute(sql) cursor.execute(sql)
db.close() db.close()
print("成功写入") # print("成功写入")
def multi_update(key, name_dict): def multi_update(key, name_dict):
...@@ -209,9 +209,9 @@ def multi_update(key, name_dict): ...@@ -209,9 +209,9 @@ def multi_update(key, name_dict):
if get_native_queue(device_id) == native_queue_list: if get_native_queue(device_id) == native_queue_list:
update_sql_dairy_queue(key, diary_id) update_sql_dairy_queue(key, diary_id)
print("更新结束") # print("更新结束")
else: else:
print("不需要更新日记队列") # print("不需要更新日记队列")
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment