Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
c1f6542c
Commit
c1f6542c
authored
Nov 06, 2019
by
高雅喆
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
test_df
parent
b3da204d
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
90 additions
and
0 deletions
+90
-0
gyz_test.py
eda/smart_rank/gyz_test.py
+90
-0
No files found.
eda/smart_rank/gyz_test.py
0 → 100644
View file @
c1f6542c
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
pymysql
import
smtplib
from
email.mime.text
import
MIMEText
from
email.utils
import
formataddr
from
email.mime.multipart
import
MIMEMultipart
from
email.mime.application
import
MIMEApplication
import
redis
import
datetime
from
pyspark
import
SparkConf
import
time
from
pyspark.sql
import
SparkSession
import
json
import
numpy
as
np
import
pandas
as
pd
from
pyspark.sql.functions
import
lit
from
pyspark.sql.functions
import
concat_ws
from
tool
import
*
def
get_user_service_portrait
(
x
,
all_word_tags
,
all_tag_tag_type
,
all_3tag_2tag
,
all_tags_name
,
size
=
None
,
pay_time
=
0
):
cl_id
=
x
[
0
]
search_info
=
x
[
1
]
user_df_service
=
get_user_log
(
cl_id
,
all_word_tags
,
pay_time
=
pay_time
)
# 增加df字段(days_diff_now, tag_type, tag2)
if
not
user_df_service
.
empty
:
user_df_service
[
"days_diff_now"
]
=
round
((
int
(
time
.
time
())
-
user_df_service
[
"time"
]
.
astype
(
float
))
/
(
24
*
60
*
60
))
user_df_service
[
"tag_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag_id"
]),
axis
=
1
)
user_df_service
=
user_df_service
[
user_df_service
[
'tag_type'
]
.
isin
([
'2'
,
'3'
])]
if
not
user_df_service
.
empty
:
user_log_df_tag2_list
=
user_df_service
[
user_df_service
[
'tag_type'
]
==
'2'
][
'tag_id'
]
.
unique
()
.
tolist
()
user_df_service
[
"tag2"
]
=
user_df_service
.
apply
(
lambda
x
:
get_tag2_from_tag3
(
x
.
tag_id
,
all_3tag_2tag
,
user_log_df_tag2_list
)
if
x
.
tag_type
==
'3'
else
x
.
tag_id
,
axis
=
1
)
user_df_service
[
"tag2_type"
]
=
user_df_service
.
apply
(
lambda
x
:
all_tag_tag_type
.
get
(
x
[
"tag2"
]),
axis
=
1
)
# 算分及比例
user_df_service
[
"tag_score"
]
=
user_df_service
.
apply
(
lambda
x
:
compute_henqiang
(
x
.
days_diff_now
,
exponential
=
0
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"henqiang"
else
(
compute_jiaoqiang
(
x
.
days_diff_now
,
exponential
=
0
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"jiaoqiang"
else
(
compute_ai_scan
(
x
.
days_diff_now
,
exponential
=
0
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ai_scan"
else
(
compute_ruoyixiang
(
x
.
days_diff_now
,
exponential
=
0
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)
if
x
.
score_type
==
"ruoyixiang"
else
compute_validate
(
x
.
days_diff_now
,
exponential
=
0
)
/
get_action_tag_count
(
user_df_service
,
x
.
time
)))),
axis
=
1
)
tag_score_sum
=
user_df_service
.
groupby
(
by
=
[
"tag2"
,
"tag2_type"
])
.
agg
(
{
'tag_score'
:
'sum'
,
'cl_id'
:
'first'
,
'action'
:
'first'
})
.
reset_index
()
.
sort_values
(
by
=
[
"tag_score"
],
ascending
=
False
)
tag_score_sum
[
'weight'
]
=
100
*
tag_score_sum
[
'tag_score'
]
/
tag_score_sum
[
'tag_score'
]
.
sum
()
tag_score_sum
[
"pay_type"
]
=
tag_score_sum
.
apply
(
lambda
x
:
3
if
x
.
action
==
"api/order/validate"
else
(
2
if
x
.
action
==
"api/settlement/alipay_callback"
else
1
),
axis
=
1
)
gmkv_tag_score_sum
=
tag_score_sum
[[
"tag2"
,
"tag_score"
,
"weight"
]][:
size
]
.
to_dict
(
'record'
)
gmkv_tag_score2_sum
=
tag_score_sum
[[
"tag2"
,
"tag_score"
]][:
size
]
.
to_dict
(
'record'
)
gmkv_tag_score2_sum_dict
=
{
i
[
"tag2"
]:
i
[
"tag_score"
]
for
i
in
gmkv_tag_score2_sum
}
gmkv_tag_score3_sum_dict
=
{
all_tags_name
[
i
]:
gmkv_tag_score2_sum_dict
[
i
]
for
i
in
gmkv_tag_score2_sum_dict
}
gmkv_tag_score3_sum_dict_sort_list
=
sorted
(
gmkv_tag_score3_sum_dict
.
items
(),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
portrait_result
=
[
i
[
0
]
for
i
in
gmkv_tag_score3_sum_dict_sort_list
]
return
[
cl_id
,
search_info
,
portrait_result
]
# data
device_info
=
[]
with
open
(
"/home/gmuser/gyz/log/have_search_device_20191105.csv"
,
"r"
)
as
f
:
for
line
in
f
.
readlines
():
data
=
line
.
strip
()
.
split
(
"="
)
device
=
data
[
0
]
search_words
=
eval
(
data
[
1
])
device_info
.
append
([
device
,
search_words
])
pay_time
=
1572883200
# rdd
sparkConf
=
SparkConf
()
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
"true"
)
\
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
"true"
)
\
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
"false"
)
\
.
set
(
"spark.tispark.plan.allow_index_read"
,
"true"
)
\
.
set
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
\
.
set
(
"spark.tispark.pd.addresses"
,
"172.16.40.170:2379"
)
.
set
(
"spark.io.compression.codec"
,
"lzf"
)
\
.
set
(
"spark.driver.maxResultSize"
,
"8g"
)
.
set
(
"spark.sql.avro.compression.codec"
,
"snappy"
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
spark
.
sparkContext
.
addPyFile
(
"/srv/apps/ffm-baseline_git/eda/smart_rank/tool.py"
)
device_ids_lst_rdd
=
spark
.
sparkContext
.
parallelize
(
device_info
)
result
=
device_ids_lst_rdd
.
repartition
(
100
)
.
map
(
lambda
x
:
get_user_service_portrait
(
x
,
all_word_tags
,
all_tag_tag_type
,
all_3tag_2tag
,
all_tags_name
,
size
=
None
,
pay_time
=
pay_time
))
# result.foreach(print)
result_df
=
result
.
toDF
()
result_df
.
to_csv
(
"~/test_df.csv"
)
spark
.
stop
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment