Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
cb34d9d3
Commit
cb34d9d3
authored
Aug 29, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change ffm process
parent
c5bcb8e4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
353 additions
and
11 deletions
+353
-11
config.py
config.py
+30
-4
diaryUpdateOnlineOffline.py
diaryUpdateOnlineOffline.py
+315
-0
processData.py
processData.py
+2
-2
userProfile.py
userProfile.py
+6
-5
No files found.
config.py
View file @
cb34d9d3
DIRECTORY_PATH
=
'/data2/models/'
# 测试日期一定要大于验证日期,因为切割数据集的代码是这样设置的
# VALIDATION_DATE = '2018-08-05'
...
...
@@ -13,5 +11,33 @@ MODEL_VERSION = ''
lr
=
0.03
l2_lambda
=
0.002
# processData.py
# diaryTraining.py
#线上日记视频对应的ip
ONLINE_EAGLE_HOST
=
'10.66.157.22'
# 测试日记视频所在的ip
LOCAL_EAGLE_HOST
=
"192.168.15.12"
# 本地地址
LOCAL_DIRCTORY
=
"/Users/mac/utils/"
# # 线下pkl
# "/Users/mac/utils/ffm.pkl"
# #线下预测文件
# "/Users/mac/utils/result/{0}.csv".format(queue_name)
# # 线下模型、预测产出文件
# "/Users/mac/utils/model.out",
# "/Users/mac/utils/result/{0}_output.txt".format(queue_name)
#
# # 线下日记队列
# host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
# passwd='workwork', db='doris_test'
# select native_queue from device_diary_queue where device_id = '{}' and city_id = '{}';".for
# update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
# (queue_name,id_str,device_id, city_id)
#
# # 线下日记打分表
# host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
# passwd='workwork', db='zhengxing_test'
# "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
diaryUpdateOnlineOffline.py
0 → 100644
View file @
cb34d9d3
#!/srv/envs/nvwa/bin/python
# -*- coding: utf-8 -*-
import
pickle
import
xlearn
as
xl
import
pandas
as
pd
import
pymysql
from
datetime
import
datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import
utils
import
warnings
from
multiprocessing
import
Pool
from
userProfile
import
get_active_users
from
sklearn.preprocessing
import
MinMaxScaler
import
time
from
config
import
*
import
socket
def
get_video_id
(
cache_video_id
):
if
flag
:
db
=
pymysql
.
connect
(
host
=
ONLINE_EAGLE_HOST
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
else
:
# 本地数据库,没有密码,可能报错
db
=
pymysql
.
connect
(
host
=
LOCAL_EAGLE_HOST
,
port
=
4000
,
user
=
'root'
,
db
=
'eagle'
)
cursor
=
db
.
cursor
()
sql
=
"select diary_id from feed_diary_boost;"
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
print
(
"videio_id 预览"
)
print
(
df
.
head
(
1
))
db
.
close
()
if
df
.
empty
:
return
cache_video_id
else
:
video_id
=
df
[
0
]
.
values
.
tolist
()
return
video_id
# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def
feature_en
(
x_list
,
device_id
):
data
=
pd
.
DataFrame
(
x_list
)
# 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
data
=
data
.
rename
(
columns
=
{
0
:
"cid"
})
data
[
"device_id"
]
=
device_id
now
=
datetime
.
now
()
data
[
"hour"
]
=
now
.
hour
data
[
"minute"
]
=
now
.
minute
data
.
loc
[
data
[
"hour"
]
==
0
,
[
"hour"
]]
=
24
data
.
loc
[
data
[
"minute"
]
==
0
,
[
"minute"
]]
=
60
data
[
"hour"
]
=
data
[
"hour"
]
.
astype
(
"category"
)
data
[
"minute"
]
=
data
[
"minute"
]
.
astype
(
"category"
)
# 虽然预测y,但ffm转化需要y,并不影响预测结果
data
[
"y"
]
=
0
# print("done 特征工程")
return
data
# 把ffm.pkl load进来,将上面的数据转化为ffm格式
def
transform_ffm_format
(
df
,
queue_name
,
device_id
):
with
open
(
DIRECTORY_PATH
+
"ffm.pkl"
,
"rb"
)
as
f
:
ffm_format_pandas
=
pickle
.
load
(
f
)
data
=
ffm_format_pandas
.
native_transform
(
df
)
predict_file_name
=
DIRECTORY_PATH
+
"result/{0}_{1}.csv"
.
format
(
device_id
,
queue_name
)
data
.
to_csv
(
predict_file_name
,
index
=
False
,
header
=
None
)
# print("done ffm")
return
predict_file_name
def
predict
(
queue_name
,
queue_arg
,
device_id
):
data
=
feature_en
(
queue_arg
[
0
],
device_id
)
data_file_path
=
transform_ffm_format
(
data
,
queue_name
,
device_id
)
ffm_model
=
xl
.
create_ffm
()
ffm_model
.
setTest
(
data_file_path
)
ffm_model
.
setSigmoid
()
ffm_model
.
predict
(
DIRECTORY_PATH
+
"model.out"
,
DIRECTORY_PATH
+
"result/output{0}_{1}.csv"
.
format
(
device_id
,
queue_name
))
def
save_result
(
queue_name
,
queue_arg
,
device_id
):
score_df
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"result/output{0}_{1}.csv"
.
format
(
device_id
,
queue_name
),
header
=
None
)
mm_scaler
=
MinMaxScaler
()
mm_scaler
.
fit
(
score_df
)
score_df
=
pd
.
DataFrame
(
mm_scaler
.
transform
(
score_df
))
score_df
=
score_df
.
rename
(
columns
=
{
0
:
"score"
})
score_df
[
"cid"
]
=
queue_arg
[
0
]
# 去掉cid前面的"diary|"
score_df
[
"cid"
]
=
score_df
[
"cid"
]
.
apply
(
lambda
x
:
x
[
6
:])
# print("score_df:")
# print(score_df.head(1))
# print(score_df.shape)
if
queue_arg
[
1
]
!=
[]:
df_temp
=
pd
.
DataFrame
(
queue_arg
[
1
])
.
rename
(
columns
=
{
0
:
"cid"
})
df_temp
[
"score"
]
=
0
df_temp
=
df_temp
.
sort_index
(
axis
=
1
,
ascending
=
False
)
df_temp
[
"cid"
]
=
df_temp
[
"cid"
]
.
apply
(
lambda
x
:
x
[
6
:])
predict_score_df
=
score_df
.
append
(
df_temp
)
return
predict_score_df
else
:
return
score_df
def
get_score
(
queue_arg
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
cursor
=
db
.
cursor
()
# 去除diary_id 前面的"diary|"
diary_list
=
tuple
(
list
(
map
(
lambda
x
:
x
[
6
:],
queue_arg
[
2
])))
sql
=
"select score,diary_id from biz_feed_diary_score where diary_id in {};"
.
format
(
diary_list
)
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
score_df
=
pd
.
DataFrame
(
list
(
result
))
.
dropna
()
db
.
close
()
return
score_df
def
update_dairy_queue
(
score_df
,
predict_score_df
,
total_video_id
):
diary_id
=
score_df
[
"cid"
]
.
values
.
tolist
()
if
total_video_id
!=
[]:
video_id
=
list
(
set
(
diary_id
)
&
set
(
total_video_id
))
if
len
(
video_id
)
>
0
:
not_video
=
list
(
set
(
diary_id
)
-
set
(
video_id
))
# 为了相加时cid能够匹配,先把cid变成索引
not_video_df
=
score_df
.
loc
[
score_df
[
"cid"
]
.
isin
(
not_video
)]
.
set_index
([
"cid"
])
not_video_predict_df
=
predict_score_df
.
loc
[
predict_score_df
[
"cid"
]
.
isin
(
not_video
)]
.
set_index
([
"cid"
])
not_video_df
[
"score"
]
=
not_video_df
[
"score"
]
+
not_video_predict_df
[
"score"
]
not_video_df
=
not_video_df
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
video_df
=
score_df
.
loc
[
score_df
[
"cid"
]
.
isin
(
video_id
)]
.
set_index
([
"cid"
])
video_predict_df
=
predict_score_df
.
loc
[
predict_score_df
[
"cid"
]
.
isin
(
video_id
)]
.
set_index
([
"cid"
])
video_df
[
"score"
]
=
video_df
[
"score"
]
+
video_predict_df
[
"score"
]
video_df
=
video_df
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
not_video_id
=
not_video_df
.
index
.
tolist
()
video_id
=
video_df
.
index
.
tolist
()
new_queue
=
not_video_id
i
=
1
for
j
in
video_id
:
new_queue
.
insert
(
i
,
j
)
i
+=
5
# print("分数合并成功")
return
new_queue
# 如果取交集后没有视频日记
else
:
score_df
=
score_df
.
set_index
([
"cid"
])
predict_score_df
=
predict_score_df
.
set_index
([
"cid"
])
score_df
[
"score"
]
=
score_df
[
"score"
]
+
predict_score_df
[
"score"
]
score_df
=
score_df
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
# print("分数合并成功1")
return
score_df
.
index
.
tolist
()
# 如果total_video_id是空列表
else
:
score_df
=
score_df
.
set_index
([
"cid"
])
predict_score_df
=
predict_score_df
.
set_index
([
"cid"
])
score_df
[
"score"
]
=
score_df
[
"score"
]
+
predict_score_df
[
"score"
]
score_df
=
score_df
.
sort_values
(
by
=
"score"
,
ascending
=
False
)
# print("分数合并成功1")
return
score_df
.
index
.
tolist
()
def
update_sql_dairy_queue
(
queue_name
,
diary_id
,
device_id
,
city_id
):
db
=
pymysql
.
connect
(
host
=
'rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'doris'
,
passwd
=
'o5gbA27hXHHm'
,
db
=
'doris_prod'
)
cursor
=
db
.
cursor
()
id_str
=
str
(
diary_id
[
0
])
for
i
in
range
(
1
,
len
(
diary_id
)):
id_str
=
id_str
+
","
+
str
(
diary_id
[
i
])
sql
=
"update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'"
.
format
\
(
queue_name
,
id_str
,
device_id
,
city_id
)
cursor
.
execute
(
sql
)
db
.
commit
()
db
.
close
()
print
(
"成功写入diary_id"
)
def
queue_compare
(
old_list
,
new_list
):
global
update_queue_numbers
print
(
"更新日记队列总数:{}"
.
format
(
update_queue_numbers
))
# 去掉前面的"diary|"
old_list
=
list
(
map
(
lambda
x
:
int
(
x
[
6
:]),
old_list
))
# print("旧表前十个")
# print(old_list[:10])
# print("新表前十个")
# print(new_list[:10])
temp
=
list
(
range
(
len
(
old_list
)))
x_dict
=
dict
(
zip
(
old_list
,
temp
))
temp
=
list
(
range
(
len
(
new_list
)))
y_dict
=
dict
(
zip
(
new_list
,
temp
))
i
=
0
for
key
in
x_dict
.
keys
():
if
x_dict
[
key
]
!=
y_dict
[
key
]:
i
+=
1
if
i
>
0
:
update_queue_numbers
+=
1
print
(
"更新日记队列总数:{}"
.
format
(
update_queue_numbers
))
print
(
"日记队列更新前日记总个数{},位置发生变化个数{},发生变化率{}
%
"
.
format
(
len
(
old_list
),
i
,
round
(
i
/
len
(
old_list
)
*
100
),
2
))
def
get_queue
(
device_id
,
city_id
,
queue_name
):
db
=
pymysql
.
connect
(
host
=
'rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'doris'
,
passwd
=
'o5gbA27hXHHm'
,
db
=
'doris_prod'
)
cursor
=
db
.
cursor
()
sql
=
"select {} from device_diary_queue "
\
"where device_id = '{}' and city_id = '{}';"
.
format
(
queue_name
,
device_id
,
city_id
)
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
if
df
.
empty
:
# print("该用户对应的日记为空")
return
False
else
:
queue_list
=
df
.
loc
[
0
,
0
]
.
split
(
","
)
queue_list
=
list
(
map
(
lambda
x
:
"diary|"
+
str
(
x
),
queue_list
))
db
.
close
()
# print("成功获取queue")
return
queue_list
def
pipe_line
(
queue_name
,
queue_arg
,
device_id
,
total_video_id
):
predict
(
queue_name
,
queue_arg
,
device_id
)
predict_score_df
=
save_result
(
queue_name
,
queue_arg
,
device_id
)
score_df
=
get_score
(
queue_arg
)
if
score_df
.
empty
:
# print("获取的日记列表是空")
return
False
else
:
score_df
=
score_df
.
rename
(
columns
=
{
0
:
"score"
,
1
:
"cid"
})
diary_queue
=
update_dairy_queue
(
score_df
,
predict_score_df
,
total_video_id
)
return
diary_queue
def
user_update
(
device_id
,
city_id
,
queue_name
,
data_set_cid
,
total_video_id
):
queue_list
=
get_queue
(
device_id
,
city_id
,
queue_name
)
if
queue_list
:
queue_predict
=
list
(
set
(
queue_list
)
&
set
(
data_set_cid
))
queue_not_predict
=
list
(
set
(
queue_list
)
-
set
(
data_set_cid
))
queue_arg
=
[
queue_predict
,
queue_not_predict
,
queue_list
]
if
queue_predict
!=
[]:
diary_queue
=
pipe_line
(
queue_name
,
queue_arg
,
device_id
,
total_video_id
)
if
diary_queue
:
update_sql_dairy_queue
(
queue_name
,
diary_queue
,
device_id
,
city_id
)
queue_compare
(
queue_list
,
diary_queue
)
# print("更新结束")
else
:
print
(
"获取的日记列表是空,所以不更新日记队列"
)
else
:
print
(
"预测集是空,不需要预测"
)
else
:
print
(
"日记队列为空"
)
def
multi_proecess_update
(
device_id
,
city_id
,
data_set_cid
,
total_video_id
):
queue_name_list
=
[
"native_queue"
,
"nearby_queue"
,
"nation_queue"
,
"megacity_queue"
]
pool
=
Pool
(
4
)
for
queue_name
in
queue_name_list
:
pool
.
apply_async
(
user_update
,
(
device_id
,
city_id
,
queue_name
,
data_set_cid
,
total_video_id
,))
pool
.
close
()
pool
.
join
()
if
__name__
==
"__main__"
:
warnings
.
filterwarnings
(
"ignore"
)
flag
=
False
# 下面这个ip是线上服务器ip
if
socket
.
gethostbyname
(
socket
.
gethostname
())
==
'10.31.242.83'
:
flag
=
True
total_number
=
0
# 增加缓存日记视频列表
cache_video_id
=
[]
cache_device_city_list
=
[]
update_queue_numbers
=
0
while
True
:
if
flag
:
data_set_cid
=
pd
.
read_csv
(
DIRECTORY_PATH
+
"data_set_cid.csv"
)[
"cid"
]
.
values
.
tolist
()
else
:
data_set_cid
=
pd
.
read_csv
(
LOCAL_DIRCTORY
+
"data_set_cid.csv"
)[
"cid"
]
.
values
.
tolist
()
total_video_id
=
get_video_id
(
cache_video_id
)
cache_video_id
=
total_video_id
device_city_list
=
get_active_users
(
flag
)
print
(
"过滤前用户数:{}"
.
format
(
len
(
device_city_list
)))
# 过滤掉5分钟内预测过的用户
device_city_list
=
list
(
set
(
tuple
(
device_city_list
))
-
set
(
tuple
(
cache_device_city_list
)))
print
(
"过滤后用户数:{}"
.
format
(
len
(
device_city_list
)))
print
(
"缓存视频个数:{}"
.
format
(
len
(
cache_device_city_list
)))
if
datetime
.
now
()
.
minute
%
5
==
0
:
cache_device_city_list
=
[]
if
device_city_list
!=
[]:
cache_device_city_list
.
extend
(
device_city_list
)
total_number
+=
len
(
device_city_list
)
print
(
"累计预测用户总数:{}"
.
format
(
total_number
))
for
device_city
in
device_city_list
:
# start = time.time()
multi_proecess_update
(
device_city
[
0
],
device_city
[
1
],
data_set_cid
,
total_video_id
)
# end = time.time()
# print("更新该用户队列耗时{}秒".format((end - start)))
# # TODO 上线后把预测用户改成多进程预测
processData.py
View file @
cb34d9d3
...
...
@@ -68,8 +68,8 @@ def ffm_transform(data, test_number, validation_number):
print
(
"Start ffm transform"
)
start
=
time
.
time
()
ffm_train
=
multiFFMFormatPandas
()
# 服务器内存空闲的时候,可以下面的
6改成8。6比较稳定,如果服务器内存占用较多的时候,用8
可能因为分配不到内存,脚本挂掉。
data
=
ffm_train
.
fit_transform
(
data
,
y
=
'y'
,
n
=
50000
,
processes
=
6
)
# 服务器内存空闲的时候,可以下面的
4改成6。4比较稳定,如果服务器内存被其他程序占用较多的时候,用6
可能因为分配不到内存,脚本挂掉。
data
=
ffm_train
.
fit_transform
(
data
,
y
=
'y'
,
n
=
50000
,
processes
=
4
)
with
open
(
DIRECTORY_PATH
+
"train/ffm.pkl"
,
"wb"
)
as
f
:
pickle
.
dump
(
ffm_train
,
f
)
...
...
userProfile.py
View file @
cb34d9d3
...
...
@@ -7,18 +7,19 @@ import time
# 获取当下一分钟内活跃用户
def
get_active_users
():
def
get_active_users
(
flag
):
now
=
datetime
.
now
()
now_start
=
str
(
now
)[:
16
]
+
":00"
now_end
=
str
(
now
)[:
16
]
+
":59"
sql
=
"select device_id,city_id from user_active_time "
\
"where active_time <= '{}' and active_time >= '{}'"
.
format
(
now_end
,
now_start
)
df
=
con_sql
(
sql
)
if
flag
:
df
=
con_sql
(
sql
)
else
:
pass
# df = 问一下亚男,如果没有,造表,造数据
if
df
.
empty
:
print
(
"当下这一分钟没有活跃用户,不需要预测"
)
for
eachFile
in
os
.
listdir
(
"/tmp"
):
if
"xlearn"
in
eachFile
:
os
.
remove
(
"/tmp"
+
"/"
+
eachFile
)
time
.
sleep
(
56
)
return
[]
else
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment