Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
d84b3ee6
Commit
d84b3ee6
authored
May 24, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
92807d12
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
8 deletions
+7
-8
feature_engineering.py
tensnsorflow/feature_engineering.py
+7
-8
No files found.
tensnsorflow/feature_engineering.py
View file @
d84b3ee6
...
@@ -6,6 +6,7 @@ from pyspark.sql import SparkSession
...
@@ -6,6 +6,7 @@ from pyspark.sql import SparkSession
import
datetime
import
datetime
import
pandas
as
pd
import
pandas
as
pd
import
time
import
time
from
pyspark
import
StorageLevel
def
app_list_func
(
x
,
l
):
def
app_list_func
(
x
,
l
):
...
@@ -138,7 +139,7 @@ def feature_engineer():
...
@@ -138,7 +139,7 @@ def feature_engineer():
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
3
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
100
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
)
...
@@ -203,7 +204,8 @@ def feature_engineer():
...
@@ -203,7 +204,8 @@ def feature_engineer():
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
d
=
time
.
time
()
d
=
time
.
time
()
rdd
.
persist
()
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_AND_DISK
)
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
...
@@ -264,7 +266,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -264,7 +266,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
df
=
spark
.
sql
(
sql
)
df
=
spark
.
sql
(
sql
)
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
c
=
time
.
time
()
f
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
...
@@ -286,10 +288,8 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -286,10 +288,8 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
value_map
.
get
(
x
[
29
],
299985
)
value_map
.
get
(
x
[
29
],
299985
)
]))
]))
rdd
.
persist
()
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_AND_DISK
)
d
=
time
.
time
()
print
(
"rdd"
)
print
((
d
-
c
)
/
60
)
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native csv"
)
print
(
"native csv"
)
...
@@ -298,7 +298,6 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -298,7 +298,6 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/",header = 'true')
# native_pre.coalesce(1).write.format('com.databricks.spark.csv').save(path+"native/",header = 'true')
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
# 预测的tfrecord必须写成一个文件,这样可以摆保证顺序
f
=
time
.
time
()
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
])))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment