Commit eaf4dc69 authored by 张彦钊's avatar 张彦钊

修改特征工程文件

parent 003a8df1
......@@ -245,7 +245,7 @@ def feature_engineer():
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train = rdd.filter(lambda x: x[0] != validate_date).map(
train = rdd.map(
lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
x[10], x[11], x[12], x[13], x[14], x[15],x[16],x[17],x[18]))
f = time.time()
......@@ -301,7 +301,8 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
"left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date"
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date " \
"where device_id = 'C33E2C8E-86E9-4C91-8458-526FB81E4C78'"
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "hospital_id",
......@@ -386,6 +387,6 @@ if __name__ == '__main__':
local_path = "/home/gmuser/esmm/"
validate_date, value_map, app_list_map, leve2_map, leve3_map = feature_engineer()
# get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
spark.stop()
......@@ -51,6 +51,13 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"app_list": tf.VarLenFeature(tf.int64),
"level2_list": tf.VarLenFeature(tf.int64),
"level3_list": tf.VarLenFeature(tf.int64),
"tag1_list": tf.VarLenFeature(tf.int64),
"tag2_list": tf.VarLenFeature(tf.int64),
"tag3_list": tf.VarLenFeature(tf.int64),
"tag4_list": tf.VarLenFeature(tf.int64),
"tag5_list": tf.VarLenFeature(tf.int64),
"tag6_list": tf.VarLenFeature(tf.int64),
"tag7_list": tf.VarLenFeature(tf.int64),
"search_tag2_list": tf.VarLenFeature(tf.int64),
"search_tag3_list": tf.VarLenFeature(tf.int64),
"uid": tf.VarLenFeature(tf.string),
......@@ -115,6 +122,13 @@ def model_fn(features, labels, mode, params):
app_list = features['app_list']
level2_list = features['level2_list']
level3_list = features['level3_list']
tag1_list = features['tag1_list']
tag2_list = features['tag2_list']
tag3_list = features['tag3_list']
tag4_list = features['tag4_list']
tag5_list = features['tag5_list']
tag6_list = features['tag6_list']
tag7_list = features['tag7_list']
search_tag2_list = features['search_tag2_list']
search_tag3_list = features['search_tag3_list']
uid = features['uid']
......@@ -132,12 +146,20 @@ def model_fn(features, labels, mode, params):
app_id = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=app_list, sp_weights=None, combiner="sum")
level2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level2_list, sp_weights=None, combiner="sum")
level3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level3_list, sp_weights=None, combiner="sum")
tag1 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag1_list, sp_weights=None, combiner="sum")
tag2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag2_list, sp_weights=None, combiner="sum")
tag3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag3_list, sp_weights=None, combiner="sum")
tag4 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag4_list, sp_weights=None, combiner="sum")
tag5 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag5_list, sp_weights=None, combiner="sum")
tag6 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag6_list, sp_weights=None, combiner="sum")
tag7 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag7_list, sp_weights=None, combiner="sum")
search_tag2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=search_tag2_list, sp_weights=None, combiner="sum")
search_tag3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=search_tag3_list, sp_weights=None, combiner="sum")
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat = tf.concat([tf.reshape(embedding_id, shape=[-1, common_dims]), app_id, level2, level3,search_tag2,search_tag3], axis=1)
x_concat = tf.concat([tf.reshape(embedding_id, shape=[-1, common_dims]), app_id, level2, level3, tag1,
tag2, tag3, tag4, tag5, tag6, tag7,search_tag2,search_tag3], axis=1)
uid = tf.sparse.to_dense(uid,default_value="")
city = tf.sparse.to_dense(city,default_value="")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment