Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
edb20693
Commit
edb20693
authored
Jan 30, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
nearby queue 改成取top500日记,写入数据库增加chunksize参数
parent
b1df4af7
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
133 additions
and
15 deletions
+133
-15
sort_and_2sql.py
eda/esmm/Model_pipline/sort_and_2sql.py
+7
-15
cid_time_cut.py
tensnsorflow/cid_time_cut.py
+57
-0
multi_hot.py
tensnsorflow/multi_hot.py
+69
-0
No files found.
eda/esmm/Model_pipline/sort_and_2sql.py
View file @
edb20693
...
...
@@ -18,18 +18,10 @@ def con_sql(sql):
db
.
close
()
return
result
def
nearby_set_join
(
lst
):
# return ','.join([str(i) for i in list(lst)])
return
','
.
join
([
str
(
i
)
for
i
in
lst
.
unique
()
.
tolist
()])
def
native_set_join
(
lst
):
l
=
lst
.
unique
()
.
tolist
()
d
=
len
(
l
)
if
d
>
500
:
d
=
500
r
=
[
str
(
i
)
for
i
in
l
]
r
=
r
[:
d
]
def
set_join
(
lst
):
r
=
[
str
(
i
)
for
i
in
lst
.
unique
()
.
tolist
()]
r
=
r
[:
500
]
return
','
.
join
(
r
)
def
main
():
...
...
@@ -40,7 +32,7 @@ def main():
df1
=
pd
.
read_csv
(
"/home/gmuser/esmm_data/native/pred.txt"
,
sep
=
'
\t
'
,
header
=
None
,
names
=
[
"ctr"
,
"cvr"
,
"ctcvr"
])
df2
[
"ctr"
],
df2
[
"cvr"
],
df2
[
"ctcvr"
]
=
df1
[
"ctr"
],
df1
[
"cvr"
],
df1
[
"ctcvr"
]
df3
=
df2
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
apply
(
lambda
x
:
x
.
sort_values
(
by
=
"ctcvr"
,
ascending
=
False
))
.
reset_index
(
drop
=
True
)
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
agg
({
'cid_id'
:
native_
set_join
})
.
reset_index
(
drop
=
False
)
df3
=
df2
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
apply
(
lambda
x
:
x
.
sort_values
(
by
=
"ctcvr"
,
ascending
=
False
))
.
reset_index
(
drop
=
True
)
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
agg
({
'cid_id'
:
set_join
})
.
reset_index
(
drop
=
False
)
df3
.
columns
=
[
"device_id"
,
"city_id"
,
"native_queue"
]
print
(
"native_device_count"
,
df3
.
shape
)
...
...
@@ -51,7 +43,7 @@ def main():
df1
=
pd
.
read_csv
(
"/home/gmuser/esmm_data/nearby/pred.txt"
,
sep
=
'
\t
'
,
header
=
None
,
names
=
[
"ctr"
,
"cvr"
,
"ctcvr"
])
df2
[
"ctr"
],
df2
[
"cvr"
],
df2
[
"ctcvr"
]
=
df1
[
"ctr"
],
df1
[
"cvr"
],
df1
[
"ctcvr"
]
df4
=
df2
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
apply
(
lambda
x
:
x
.
sort_values
(
by
=
"ctcvr"
,
ascending
=
False
))
.
reset_index
(
drop
=
True
)
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
agg
({
'cid_id'
:
nearby_
set_join
})
.
reset_index
(
drop
=
False
)
df4
=
df2
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
apply
(
lambda
x
:
x
.
sort_values
(
by
=
"ctcvr"
,
ascending
=
False
))
.
reset_index
(
drop
=
True
)
.
groupby
(
by
=
[
"uid"
,
"city"
])
.
agg
({
'cid_id'
:
set_join
})
.
reset_index
(
drop
=
False
)
df4
.
columns
=
[
"device_id"
,
"city_id"
,
"nearby_queue"
]
print
(
"nearby_device_count"
,
df4
.
shape
)
...
...
@@ -83,7 +75,7 @@ def main():
cur
=
con
.
cursor
()
cur
.
execute
(
delete_str
)
con
.
commit
()
df_all
.
to_sql
(
'esmm_device_diary_queue'
,
con
=
engine
,
if_exists
=
'append'
,
index
=
False
)
df_all
.
to_sql
(
'esmm_device_diary_queue'
,
con
=
engine
,
if_exists
=
'append'
,
index
=
False
,
chunksize
=
8000
)
except
Exception
as
e
:
print
(
e
)
...
...
tensnsorflow/cid_time_cut.py
0 → 100644
View file @
edb20693
import
pandas
as
pd
import
pymysql
from
sqlalchemy
import
create_engine
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
finally
:
db
.
close
()
return
df
def
cut_map
(
x
):
if
0
<
x
<=
5
:
return
2
elif
5
<
x
<=
10
:
return
3
elif
10
<
x
<=
15
:
return
4
elif
15
<
x
<=
20
:
return
5
elif
20
<
x
<=
40
:
return
6
else
:
return
7
def
cut
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select cid_id,time from cid_time"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"cid"
,
1
:
"time"
})
print
(
df
.
shape
)
part_1
=
df
.
loc
[
df
[
"time"
]
==
0
]
part_2
=
df
.
loc
[
df
[
"time"
]
!=
0
]
part_1
[
"time"
]
=
1
part_2
[
"time"
]
=
part_2
[
"time"
]
.
map
(
cut_map
)
merge
=
part_1
.
append
(
part_2
)
print
(
merge
.
shape
)
yconnect
=
create_engine
(
'mysql+pymysql://root:3SYz54LS9#^9sBvC@10.66.157.22:4000/jerry_test?charset=utf8'
)
pd
.
io
.
sql
.
to_sql
(
merge
,
"cid_time_cut"
,
yconnect
,
schema
=
'jerry_test'
,
if_exists
=
'replace'
,
index
=
False
)
if
__name__
==
"__main__"
:
cut
()
tensnsorflow/multi_hot.py
0 → 100644
View file @
edb20693
import
pandas
as
pd
import
pymysql
import
datetime
from
sqlalchemy
import
create_engine
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
try
:
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
except
Exception
:
print
(
"发生异常"
,
Exception
)
df
=
pd
.
DataFrame
()
finally
:
db
.
close
()
return
df
def
multi
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_prod'
)
sql
=
"select diary_id,level2_ids from diary_feat"
df
=
con_sql
(
db
,
sql
)
.
dropna
()
print
(
df
.
shape
)
df
=
df
.
rename
(
columns
=
{
0
:
"cid"
,
1
:
"level"
})
df
[
"l1"
]
=
"lost"
df
[
"l2"
]
=
"lost"
df
[
"l3"
]
=
"lost"
for
i
in
list
(
df
[
"level"
]
.
unique
()):
l
=
[
int
(
j
)
for
j
in
i
.
split
(
";"
)]
l
=
sorted
(
l
)
if
len
(
l
)
>=
3
:
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l1"
]]
=
l
[
0
]
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l2"
]]
=
l
[
1
]
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l3"
]]
=
l
[
2
]
elif
len
(
l
)
==
2
:
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l1"
]]
=
l
[
0
]
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l2"
]]
=
l
[
1
]
elif
len
(
l
)
==
1
:
df
.
loc
[
df
[
"level"
]
==
i
,
[
"l1"
]]
=
l
[
0
]
df
=
df
.
drop
(
"level"
,
axis
=
1
)
print
(
df
.
head
())
# a = list(df["l1"].unique())
# b = list(df["l2"].unique())
# c = list(df["l3"].unique())
# print(len(a))
# print(a)
# print(len(b))
# print(b)
# print(len(c))
# print(c)
yconnect
=
create_engine
(
'mysql+pymysql://root:3SYz54LS9#^9sBvC@10.66.157.22:4000/jerry_test?charset=utf8'
)
n
=
200000
for
i
in
range
(
0
,
df
.
shape
[
0
],
n
):
if
i
==
0
:
temp
=
df
.
iloc
[
0
:
n
]
elif
i
+
n
>
df
.
shape
[
0
]:
temp
=
df
.
iloc
[
i
:]
else
:
temp
=
df
.
iloc
[
i
:
i
+
n
]
pd
.
io
.
sql
.
to_sql
(
temp
,
"cid_level2"
,
yconnect
,
schema
=
'jerry_test'
,
if_exists
=
'append'
,
index
=
False
)
print
(
"insert done"
)
if
__name__
==
"__main__"
:
multi
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment