Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
f9c7c687
Commit
f9c7c687
authored
Apr 16, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add feature file
parent
1bbca574
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
231 additions
and
0 deletions
+231
-0
feature.py
tensnsorflow/es/feature.py
+231
-0
No files found.
tensnsorflow/es/feature.py
0 → 100644
View file @
f9c7c687
import
pandas
as
pd
import
pymysql
import
datetime
def
con_sql
(
db
,
sql
):
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
df
=
pd
.
DataFrame
(
list
(
result
))
db
.
close
()
return
df
def
multi_hot
(
df
,
column
,
n
):
df
[
column
]
=
df
[
column
]
.
fillna
(
"lost_na"
)
app_list_value
=
[
i
.
split
(
","
)
for
i
in
df
[
column
]
.
unique
()]
app_list_unique
=
[]
for
i
in
app_list_value
:
app_list_unique
.
extend
(
i
)
app_list_unique
=
list
(
set
(
app_list_unique
))
number
=
len
(
app_list_unique
)
app_list_map
=
dict
(
zip
(
app_list_unique
,
list
(
range
(
n
,
number
+
n
))))
df
[
column
]
=
df
[
column
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,))
return
number
,
app_list_map
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from {}"
.
format
(
train_data_set
)
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
10
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids,feat.level2 "
\
"from {} e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
"left join device_app_list dl on e.device_id = dl.device_id "
\
"left join diary_feat feat on e.cid_id = feat.diary_id "
\
"where e.stat_date >= '{}'"
.
format
(
train_data_set
,
start
)
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel2_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"time"
,
12
:
"app_list"
,
13
:
"service_id"
,
14
:
"level3_ids"
,
15
:
"level2"
})
print
(
"esmm data ok"
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time "
\
"from train_Knowledge_network_data"
knowledge
=
con_sql
(
db
,
sql
)
knowledge
=
knowledge
.
rename
(
columns
=
{
0
:
"level2"
,
1
:
"method"
,
2
:
"min"
,
3
:
"max"
,
4
:
"treatment_time"
,
5
:
"maintain_time"
,
6
:
"recover_time"
})
knowledge
[
"level2"
]
=
knowledge
[
"level2"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
knowledge
,
on
=
'level2'
,
how
=
'left'
)
df
=
df
.
drop
(
"level2"
,
axis
=
1
)
service_id
=
tuple
(
df
[
"service_id"
]
.
unique
())
db
=
pymysql
.
connect
(
host
=
'rdsfewzdmf0jfjp9un8xj.mysql.rds.aliyuncs.com'
,
port
=
3306
,
user
=
'work'
,
passwd
=
'BJQaT9VzDcuPBqkd'
,
db
=
'zhengxing'
)
sql
=
"select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id "
\
"where s.id in {}"
.
format
(
service_id
)
hospital
=
con_sql
(
db
,
sql
)
hospital
=
hospital
.
rename
(
columns
=
{
0
:
"service_id"
,
1
:
"hospital_id"
})
# print(hospital.head())
# print("hospital")
# print(hospital.count())
hospital
[
"service_id"
]
=
hospital
[
"service_id"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
hospital
,
on
=
'service_id'
,
how
=
'left'
)
df
=
df
.
drop
(
"service_id"
,
axis
=
1
)
print
(
df
.
count
())
print
(
"before"
)
print
(
df
.
shape
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"clevel2_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
print
(
"去重后样本数量:"
,
df
.
shape
)
app_list_number
,
app_list_map
=
multi_hot
(
df
,
"app_list"
,
2
)
level2_number
,
level2_map
=
multi_hot
(
df
,
"clevel2_id"
,
2
+
app_list_number
)
level3_number
,
level3_map
=
multi_hot
(
df
,
"level3_ids"
,
2
+
app_list_number
+
level2_number
)
unique_values
=
[]
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
for
i
in
features
:
df
[
i
]
=
df
[
i
]
.
astype
(
"str"
)
df
[
i
]
=
df
[
i
]
.
fillna
(
"lost"
)
# 下面这行代码是为了区分不同的列中有相同的值
df
[
i
]
=
df
[
i
]
+
i
unique_values
.
extend
(
list
(
df
[
i
]
.
unique
()))
temp
=
list
(
range
(
2
+
app_list_number
+
level2_number
+
level3_number
,
2
+
app_list_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
train
=
df
[
df
[
"stat_date"
]
!=
validate_date
+
"stat_date"
]
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
for
i
in
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]:
train
[
i
]
=
train
[
i
]
.
map
(
value_map
)
test
[
i
]
=
test
[
i
]
.
map
(
value_map
)
print
(
"train shape"
)
print
(
train
.
shape
)
print
(
"test shape"
)
print
(
test
.
shape
)
write_csv
(
train
,
"tr"
,
100000
)
write_csv
(
test
,
"va"
,
80000
)
return
validate_date
,
value_map
,
app_list_map
,
level2_map
,
level3_map
def
app_list_func
(
x
,
l
):
b
=
x
.
split
(
","
)
e
=
[]
for
i
in
b
:
if
i
in
l
.
keys
():
e
.
append
(
l
[
i
])
else
:
e
.
append
(
0
)
return
","
.
join
([
str
(
j
)
for
j
in
e
])
def
write_csv
(
df
,
name
,
n
):
for
i
in
range
(
0
,
df
.
shape
[
0
],
n
):
if
i
==
0
:
temp
=
df
.
iloc
[
0
:
n
]
elif
i
+
n
>
df
.
shape
[
0
]:
temp
=
df
.
iloc
[
i
:]
else
:
temp
=
df
.
iloc
[
i
:
i
+
n
]
temp
.
to_csv
(
path
+
name
+
"/{}_{}.csv"
.
format
(
name
,
i
),
index
=
False
)
def
get_predict
(
date
,
value_map
,
app_list_map
,
level2_map
,
level3_map
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,feat.level2 "
\
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
"left join device_app_list dl on e.device_id = dl.device_id "
\
"left join diary_feat feat on e.cid_id = feat.diary_id"
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"label"
,
3
:
"ucity_id"
,
4
:
"clevel2_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"device_id"
,
11
:
"cid_id"
,
12
:
"time"
,
13
:
"app_list"
,
14
:
"hospital_id"
,
15
:
"level3_ids"
,
16
:
"level2"
})
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time "
\
"from train_Knowledge_network_data"
knowledge
=
con_sql
(
db
,
sql
)
knowledge
=
knowledge
.
rename
(
columns
=
{
0
:
"level2"
,
1
:
"method"
,
2
:
"min"
,
3
:
"max"
,
4
:
"treatment_time"
,
5
:
"maintain_time"
,
6
:
"recover_time"
})
knowledge
[
"level2"
]
=
knowledge
[
"level2"
]
.
astype
(
"str"
)
df
=
pd
.
merge
(
df
,
knowledge
,
on
=
'level2'
,
how
=
'left'
)
df
=
df
.
drop
(
"level2"
,
axis
=
1
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"clevel2_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
])
df
[
"stat_date"
]
=
date
print
(
df
.
head
(
6
))
df
[
"app_list"
]
=
df
[
"app_list"
]
.
fillna
(
"lost_na"
)
df
[
"app_list"
]
=
df
[
"app_list"
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,))
df
[
"clevel2_id"
]
=
df
[
"clevel2_id"
]
.
fillna
(
"lost_na"
)
df
[
"clevel2_id"
]
=
df
[
"clevel2_id"
]
.
apply
(
app_list_func
,
args
=
(
level2_map
,))
df
[
"level3_ids"
]
=
df
[
"level3_ids"
]
.
fillna
(
"lost_na"
)
df
[
"level3_ids"
]
=
df
[
"level3_ids"
]
.
apply
(
app_list_func
,
args
=
(
level3_map
,))
# print("predict shape")
# print(df.shape)
df
[
"uid"
]
=
df
[
"device_id"
]
df
[
"city"
]
=
df
[
"ucity_id"
]
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]
for
i
in
features
:
df
[
i
]
=
df
[
i
]
.
astype
(
"str"
)
df
[
i
]
=
df
[
i
]
.
fillna
(
"lost"
)
df
[
i
]
=
df
[
i
]
+
i
native_pre
=
df
[
df
[
"label"
]
==
0
]
native_pre
=
native_pre
.
drop
(
"label"
,
axis
=
1
)
nearby_pre
=
df
[
df
[
"label"
]
==
1
]
nearby_pre
=
nearby_pre
.
drop
(
"label"
,
axis
=
1
)
for
i
in
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"method"
,
"min"
,
"max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
]:
native_pre
[
i
]
=
native_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
native_pre
[
i
]
=
native_pre
[
i
]
.
fillna
(
0
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
fillna
(
0
)
print
(
"native"
)
print
(
native_pre
.
shape
)
native_pre
[[
"uid"
,
"city"
,
"cid_id"
]]
.
to_csv
(
path
+
"native.csv"
,
index
=
False
)
write_csv
(
native_pre
,
"native"
,
200000
)
print
(
"nearby"
)
print
(
nearby_pre
.
shape
)
nearby_pre
[[
"uid"
,
"city"
,
"cid_id"
]]
.
to_csv
(
path
+
"nearby.csv"
,
index
=
False
)
write_csv
(
nearby_pre
,
"nearby"
,
160000
)
if
__name__
==
'__main__'
:
train_data_set
=
"esmm_train_data"
path
=
"/data/esmm/"
date
,
value
,
app_list
,
level2
,
level3
=
get_data
()
get_predict
(
date
,
value
,
app_list
,
level2
,
level3
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment