import pandas as pd import pymysql import datetime def con_sql(db,sql): cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(list(result)) db.close() return df def multi_hot(df,column,n): df[column] = df[column].fillna("lost_na") app_list_value = [i.split(",") for i in df[column].unique()] app_list_unique = [] for i in app_list_value: app_list_unique.extend(i) app_list_unique = list(set(app_list_unique)) number = len(app_list_unique) app_list_map = dict(zip(app_list_unique, list(range(n, number + n)))) df[column] = df[column].apply(app_list_func, args=(app_list_map,)) return number,app_list_map def get_data(): db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') sql = "select max(stat_date) from {}".format(train_data_set) validate_date = con_sql(db, sql)[0].values.tolist()[0] print("validate_date:" + validate_date) temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d") start = (temp - datetime.timedelta(days=100)).strftime("%Y-%m-%d") print(start) db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \ "u.channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids,feat.level2," \ "wiki.tag,question.tag,search.tag,budan.tag,order_tag.tag,sixin.tag,cart.tag " \ "from {} e left join user_feature u on e.device_id = u.device_id " \ "left join cid_type_top c on e.device_id = c.device_id " \ "left join cid_time_cut cut on e.cid_id = cut.cid " \ "left join device_app_list dl on e.device_id = dl.device_id " \ "left join diary_feat feat on e.cid_id = feat.diary_id " \ "left join wiki_tag wiki on e.device_id = wiki.device_id " \ "left join question_tag question on e.device_id = question.device_id " \ "left join search_tag search on e.device_id = search.device_id " \ "left join budan_tag budan on e.device_id = budan.device_id " \ "left join order_tag on e.device_id = order_tag.device_id " \ "left join sixin_tag sixin on e.device_id = sixin.device_id " \ "left join cart_tag cart on e.device_id = cart.device_id " \ "where e.stat_date >= '{}'".format(train_data_set, start) # 上面order_tag 表不要简称为order,因为order是mysql的保留字,例如order by df = con_sql(db, sql) # print(df.shape) df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id", 4: "clevel2_id", 5: "ccity_name", 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id", 11: "time", 12: "app_list", 13: "service_id", 14: "level3_ids", 15: "level2", 16:"tag1",17:"tag2",18:"tag3",19:"tag4",20:"tag5",21:"tag6",22:"tag7"}) db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') sql = "select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time " \ "from train_Knowledge_network_data" knowledge = con_sql(db, sql) knowledge = knowledge.rename(columns={0: "level2", 1: "method", 2: "min", 3: "max", 4: "treatment_time", 5: "maintain_time", 6: "recover_time"}) knowledge["level2"] = knowledge["level2"].astype("str") df = pd.merge(df, knowledge, on='level2', how='left') df = df.drop("level2", axis=1) service_id = tuple(df["service_id"].unique()) db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') sql = "select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id " \ "where s.id in {}".format(service_id) hospital = con_sql(db, sql) hospital = hospital.rename(columns={0: "service_id", 1: "hospital_id"}) # print(hospital.head()) # print("hospital") # print(hospital.count()) hospital["service_id"] = hospital["service_id"].astype("str") df = pd.merge(df, hospital, on='service_id', how='left') df = df.drop("service_id", axis=1) print(df.count()) print("before") print(df.shape) df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids"]) print("after") print(df.shape) app_list_number, app_list_map = multi_hot(df, "app_list", 2) level2_number, level2_map = multi_hot(df, "clevel2_id", 2 + app_list_number) level3_number, level3_map = multi_hot(df, "level3_ids", 2 + app_list_number + level2_number) for i in ["tag1","tag2","tag3","tag4","tag5","tag6","tag7"]: df[i] = df[i].fillna("lost_na") df[i] = df[i].apply(app_list_func, args=(level2_map,)) unique_values = [] features = ["ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time", "stat_date", "hospital_id", "method", "min", "max", "treatment_time", "maintain_time", "recover_time"] for i in features: df[i] = df[i].astype("str") df[i] = df[i].fillna("lost") # 下面这行代码是为了区分不同的列中有相同的值 df[i] = df[i] + i unique_values.extend(list(df[i].unique())) temp = list(range(2 + app_list_number + level2_number + level3_number, 2 + app_list_number + level2_number + level3_number + len(unique_values))) value_map = dict(zip(unique_values, temp)) df = df.drop("device_id", axis=1) # TODO 上线后把最近一天的数据集放进训练集,这样用户的正、负反馈能及时获取 train = df test = df[df["stat_date"] == validate_date + "stat_date"] for i in ["ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time", "stat_date", "hospital_id", "method", "min", "max", "treatment_time", "maintain_time", "recover_time"]: train[i] = train[i].map(value_map) test[i] = test[i].map(value_map) # print("train shape") # print(train.shape) print("test shape") print(test.shape) write_csv(train, "tr", 100000) write_csv(test, "va", 80000) return validate_date, value_map, app_list_map, level2_map, level3_map def app_list_func(x,l): b = x.split(",") e = [] for i in b: if i in l.keys(): e.append(l[i]) else: e.append(0) return ",".join([str(j) for j in e]) def write_csv(df,name,n): for i in range(0, df.shape[0], n): if i == 0: temp = df.iloc[0:n] elif i + n > df.shape[0]: temp = df.iloc[i:] else: temp = df.iloc[i:i + n] temp.to_csv(path + name+ "/{}_{}.csv".format(name,i), index=False) def get_predict(date,value_map,app_list_map,level2_map,level3_map): db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') sql = "select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name," \ "u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time," \ "dl.app_list,e.hospital_id,feat.level3_ids,feat.level2," \ "wiki.tag,question.tag,search.tag,budan.tag,order_tag.tag,sixin.tag,cart.tag " \ "from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \ "left join cid_type_top c on e.device_id = c.device_id " \ "left join cid_time_cut cut on e.cid_id = cut.cid " \ "left join device_app_list dl on e.device_id = dl.device_id " \ "left join diary_feat feat on e.cid_id = feat.diary_id " \ "left join wiki_tag wiki on e.device_id = wiki.device_id " \ "left join question_tag question on e.device_id = question.device_id " \ "left join search_tag search on e.device_id = search.device_id " \ "left join budan_tag budan on e.device_id = budan.device_id " \ "left join order_tag on e.device_id = order_tag.device_id " \ "left join sixin_tag sixin on e.device_id = sixin.device_id " \ "left join cart_tag cart on e.device_id = cart.device_id" df = con_sql(db, sql) df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel2_id", 5: "ccity_name", 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id", 11: "cid_id", 12: "time", 13: "app_list", 14: "hospital_id", 15: "level3_ids", 16: "level2",17:"tag1",18:"tag2",19:"tag3",20:"tag4",21:"tag5",22:"tag6",23:"tag7"}) db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') sql = "select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time " \ "from train_Knowledge_network_data" knowledge = con_sql(db, sql) knowledge = knowledge.rename(columns={0: "level2", 1: "method", 2: "min", 3: "max", 4: "treatment_time", 5: "maintain_time", 6: "recover_time"}) knowledge["level2"] = knowledge["level2"].astype("str") df = pd.merge(df, knowledge, on='level2', how='left') df = df.drop("level2", axis=1) df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time", "app_list", "hospital_id", "level3_ids"]) df["stat_date"] = date print(df.head(6)) df["app_list"] = df["app_list"].fillna("lost_na") df["app_list"] = df["app_list"].apply(app_list_func, args=(app_list_map,)) df["clevel2_id"] = df["clevel2_id"].fillna("lost_na") df["clevel2_id"] = df["clevel2_id"].apply(app_list_func, args=(level2_map,)) df["level3_ids"] = df["level3_ids"].fillna("lost_na") df["level3_ids"] = df["level3_ids"].apply(app_list_func, args=(level3_map,)) for i in ["tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"]: df[i] = df[i].fillna("lost_na") df[i] = df[i].apply(app_list_func, args=(level2_map,)) # print("predict shape") # print(df.shape) df["uid"] = df["device_id"] df["city"] = df["ucity_id"] features = ["ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time", "stat_date", "hospital_id", "method", "min", "max", "treatment_time", "maintain_time", "recover_time"] for i in features: df[i] = df[i].astype("str") df[i] = df[i].fillna("lost") df[i] = df[i] + i native_pre = df[df["label"] == 0] native_pre = native_pre.drop("label", axis=1) nearby_pre = df[df["label"] == 1] nearby_pre = nearby_pre.drop("label", axis=1) for i in ["ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time", "stat_date", "hospital_id", "method", "min", "max", "treatment_time", "maintain_time", "recover_time"]: native_pre[i] = native_pre[i].map(value_map) # TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下 native_pre[i] = native_pre[i].fillna(0) nearby_pre[i] = nearby_pre[i].map(value_map) # TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下 nearby_pre[i] = nearby_pre[i].fillna(0) print("native") print(native_pre.shape) native_pre[["uid", "city", "cid_id"]].to_csv(path + "native.csv", index=False) write_csv(native_pre, "native", 200000) print("nearby") print(nearby_pre.shape) nearby_pre[["uid", "city", "cid_id"]].to_csv(path + "nearby.csv", index=False) write_csv(nearby_pre, "nearby", 160000) if __name__ == '__main__': train_data_set = "esmm_train_data_dur" path = "/home/gmuser/esmm/" date, value, app_list, level2, level3 = get_data() get_predict(date, value, app_list, level2, level3)