# -*- coding: UTF-8 -*-
import argparse
import pymysql
import redis
import datetime
import time
import json
import numpy as np
import pandas as pd
from tool import *
import logging
from collections import defaultdict


def get_count(actions):
    counts = defaultdict(int)
    for x in actions:
        counts[x] += 1
    return counts


def setup_logger(logger_name, log_file, level=logging.INFO):
    my_log = logging.getLogger(logger_name)
    formatter = logging.Formatter('%(message)s')
    file_handler = logging.FileHandler(log_file, mode='a')
    file_handler.setFormatter(formatter)
    stream_handler = logging.StreamHandler()
    stream_handler.setFormatter(formatter)
    my_log.setLevel(level)
    my_log.addHandler(file_handler)
    my_log.addHandler(stream_handler)


def get_user_service_portrait_not_alipay(cl_id, all_word_tags, all_tag_tag_type, pay_time, all_3tag_2tag, version=1,
                                             exponential=1, normalization_size=7, decay_days=30, size=10):
    """
    :param cl_id:
    :param all_word_tags:
    :param all_tag_tag_type:
    :param pay_time 用户下订单的timestamp
    :param all_3tag_2tag:
    :param version: 0:翔宇版; 1:英赫版
    :param size:
    :return: 画像(去掉支付行为)
    """
    try:
        db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
                                        db='jerry_test', charset='utf8')
        cur_jerry_test = db_jerry_test.cursor()
        # 用户的非搜索、支付的行为
        user_df_service_sql = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log " \
                              "where cl_id ='{cl_id}' and time < {pay_time} and action not in " \
                              "('api/settlement/alipay_callback','do_search')".format(cl_id=cl_id, pay_time=pay_time)
        cur_jerry_test.execute(user_df_service_sql)
        data = list(cur_jerry_test.fetchall())
        if data:
            user_df_service = pd.DataFrame(data)
            user_df_service.columns = ["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"]
        else:
            user_df_service = pd.DataFrame(columns=["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"])
        # 用户的搜索行为
        user_df_search_sql = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log " \
                             "where cl_id ='{cl_id}' and time < {pay_time} and " \
                             "action = 'do_search'".format(cl_id=cl_id, pay_time=pay_time)
        cur_jerry_test.execute(user_df_search_sql)
        data_search = list(cur_jerry_test.fetchall())
        db_jerry_test.close()

        if data_search:
            user_df_search = pd.DataFrame(data_search)
            user_df_search.columns = ["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"]
        else:
            user_df_search = pd.DataFrame(columns=["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"])

        # 搜索词转成tag
        # user_df_search_2_tag = pd.DataFrame(columns=list(user_df_service.columns))
        for index, row in user_df_search.iterrows():
            if row['tag_referrer'] in all_word_tags:
                for search_tag in all_word_tags[row['tag_referrer']]:
                    row['tag_id'] = int(search_tag)
                    user_df_service = user_df_service.append(row, ignore_index=True)
                    break

        # 增加df字段(days_diff_now, tag_type, tag2)
        if not user_df_service.empty:
            user_df_service["days_diff_now"] = round((int(time.time()) - user_df_service["time"].astype(float)) / (24 * 60 * 60))
            user_df_service["tag_type"] = user_df_service.apply(lambda x: all_tag_tag_type.get(x["tag_id"]), axis=1)
            user_df_service = user_df_service[user_df_service['tag_type'].isin(['2','3'])]
            user_log_df_tag2_list = user_df_service[user_df_service['tag_type'] == '2']['tag_id'].unique().tolist()
            user_df_service["tag2"] = user_df_service.apply(lambda x:
                                                    get_tag2_from_tag3(x.tag_id, all_3tag_2tag, user_log_df_tag2_list)
                                                    if x.tag_type == '3' else x.tag_id, axis=1)
            user_df_service["tag2_type"] = user_df_service.apply(lambda x: all_tag_tag_type.get(x["tag2"]), axis=1)
            # 算分及比例
            if version == 1:
                user_df_service["tag_score"] = user_df_service.apply(
                    lambda x: compute_henqiang(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "henqiang" else (
                        compute_jiaoqiang(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "jiaoqiang" else (
                            compute_ai_scan(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "ai_scan" else (
                            compute_ruoyixiang(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "ruoyixiang" else
                            compute_validate(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time)))), axis=1)
                finally_score = user_df_service.groupby(by=["tag2", "tag2_type"]).agg(
                    {'tag_score': 'sum', 'cl_id': 'first', 'action': get_count}).reset_index().sort_values(by=["tag_score"],
                                                                                                           ascending=False)
                finally_score['weight'] = 100 * finally_score['tag_score'] / finally_score['tag_score'].sum()
                finally_score["pay_type"] = finally_score.apply(
                    lambda x: 3 if x.action == "api/order/validate" else (
                        2 if x.action == "api/settlement/alipay_callback" else 1
                    ), axis=1
                )
                gmkv_tag_score_sum_list = finally_score["tag2"].to_list()[:size]
                # 获取tag的得分来源(action信息)
                debug_tag_score_sum = finally_score[["tag2", "tag_score", "action"]][:size].to_dict('record')
                debug_tag_score_sum_dict = {info["tag2"]: info for info in debug_tag_score_sum}
            elif version == 0:
                user_df_service["tag_score"] = user_df_service.apply(
                    lambda x: compute_henqiang(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "henqiang" else (
                        compute_jiaoqiang(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "jiaoqiang" else (
                            compute_ai_scan(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "ai_scan" else (
                                compute_ruoyixiang(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "ruoyixiang" else
                                compute_validate(x.days_diff_now, decay_days, normalization_size, exponential)))),
                    axis=1)
                finally_score = user_df_service.sort_values(by=["tag_score", "time"], ascending=False)
                finally_score.drop_duplicates(subset="tag2", inplace=True, keep="first")

                finally_score["weight"] = 100 * finally_score['tag_score'] / finally_score['tag_score'].sum()
                gmkv_tag_score_sum_list = finally_score["tag2"].to_list()[:size]
                # 获取tag的得分来源(action信息)
                debug_tag_score_sum = finally_score[["tag2", "tag_score", "action", "time"]][:size].to_dict('record')
                debug_tag_score_sum_dict = {info["tag2"]: str(datetime.datetime.fromtimestamp(int(info["time"]))) for
                                            info in debug_tag_score_sum}
        # 没有用户的画像
        else:
            gmkv_tag_score_sum_list = list()
            debug_tag_score_sum_dict = dict()
        return gmkv_tag_score_sum_list, debug_tag_score_sum_dict
    except Exception as e:
        print(e)
        return list(), dict()


def get_2_tags_coincide_rate(device_order_tags, device_portrait_result, portrait_top_n, coincide_n):
    """
    :param device_order_tags:
    :param device_portrait_result:
    :param portrait_top_n:
    :param coincide_n:
    :return: 匹配度:比对的上的用户数/昨天下单了的且有画像的用户数 * 100%
    比对的上:去掉下单和验证行为的画像的前portrait_top_n个tag  与  用户下单的美购的tag 有coincide_n个重合个数
    """
    device_count = len(device_order_tags)  # 总的下单设备数
    coincide_count = 0  # 比对的上的设备数
    not_coincide_no_portrait = 0  # 比对不上的且没有画像的设备数
    not_coincide_no_portrait_device_ids = []  # 比对不上的且没有画像的设备
    not_coincide_have_portrait_device_ids = []  # 比对不上的且有画像的设备数
    not_coincide_have_portrait = 0  # 比对不上的且有画像的设备
    for device in device_order_tags:
        order_tags = device_order_tags[device]
        portrait_tags = device_portrait_result[device]
        if portrait_tags:
            portrait_tags = portrait_tags[:portrait_top_n]
        else:
            # 没有画像的设备
            not_coincide_no_portrait += 1
            not_coincide_no_portrait_device_ids.append(device)
            continue
        # 有画像且匹配的上
        if len(set(order_tags).intersection(set(portrait_tags))) >= coincide_n:
            coincide_count += 1
        # 有画像且匹配不上
        else:
            not_coincide_have_portrait += 1
            not_coincide_have_portrait_device_ids.append(device)
    coincide_rate = coincide_count/(device_count-not_coincide_no_portrait)
    result = {"device_count": device_count, "coincide_count": coincide_count, "coincide_rate": coincide_rate,
              "not_coincide_have_portrait_count": not_coincide_have_portrait,
1              "not_coincide_no_portrait_count": not_coincide_no_portrait,
              "not_coincide_no_portrait_device_ids": not_coincide_no_portrait_device_ids,
              "not_coincide_have_portrait_device_ids": not_coincide_have_portrait_device_ids}
    return result


def get_user_order_info_yesterday(order_date, order_date_tomorrow):
    # 获取昨天下单的用户设备id,下单的美购,美购对应的tag
    # api_order只有用户的user_id,一个user_id对应多个device_id
    # 用户一次可以下多个订单(美购),一个美购对应多个tag
    sql_device_info_yesterday = """
            SELECT tmp1.user_id,
                   c.device_id,
                   tmp1.service_ids,
                   tmp1.tag_ids,
                   tmp1.pay_time
            FROM
              (SELECT tmp.user_id,
                      tmp.service_ids,
                      tmp.tag_ids,
                      tmp.pay_time,
                      max(tmp.device_id) device_id_id
               FROM
                 (SELECT a.user_id,
                         a.service_ids,
                         a.tag_ids,
                         a.pay_time,
                         b.device_id
                  FROM
                    (SELECT user_id,
                            max(pay_time) AS pay_time,
                            group_concat(DISTINCT `service_id` separator ',') service_ids,
                            group_concat(DISTINCT `tag_id` separator ',') tag_ids
                     FROM
                       (SELECT d.user_id,
                               d.service_id,
                               unix_timestamp(d.pay_time) AS pay_time,
                               e.tag_id
                        FROM api_order d
                        LEFT JOIN api_servicetag e ON d.service_id = e.service_id
                        LEFT JOIN api_tag f ON e.tag_id = f.id
                        WHERE d.status=1
                          AND d.pay_time>'{order_date}'
                          AND d.pay_time<'{order_date_tomorrow}'
                          AND f.tag_type+0 <'4'+0) tmp2
                     GROUP BY user_id) a
                  LEFT JOIN statistic_device_user b ON a.user_id = b.user_id) tmp
               GROUP BY tmp.user_id) tmp1
            LEFT JOIN statistic_device c ON tmp1.device_id_id = c.id
            WHERE c.device_id IS NOT NULL
        """.format(order_date=order_date, order_date_tomorrow=order_date_tomorrow)
    mysql_results = get_data_by_mysql('172.16.30.141', 3306, 'work', 'BJQaT9VzDcuPBqkd', 'zhengxing',
                                      sql_device_info_yesterday)
    device_ids_info = [(i["device_id"], int(i["pay_time"])) for i in mysql_results]
    all_device_action_tags = {i["device_id"]: [int(tag) for tag in i["tag_ids"].split(",")] for i in mysql_results}
    return device_ids_info, all_device_action_tags


def get_user_diary_click_info_yesterday(click_date, click_date_tomorrow):
    # 获取昨天在首页精选点击日记的用户设备id,点击的日记,日记对应的tag
    # 一个用户对应多个日记,一个日记对应多个tag
    sql_device_info_yesterday = """
        SELECT cl_id device_id,
               max(click_time) AS click_time,
               group_concat(DISTINCT `diary_id` separator ',') diary_ids,
               group_concat(DISTINCT `tag_id` separator ',') tag_ids
        FROM
          (SELECT d.cl_id,
                  d.diary_id,
                  unix_timestamp(d.click_time) AS click_time,
                  e.tag_id
           FROM jerry_test.user_click_diary_log d
           LEFT JOIN eagle.src_mimas_prod_api_diary_tags e ON d.diary_id = e.diary_id
           LEFT JOIN eagle.src_zhengxing_api_tag f ON e.tag_id = f.id
           WHERE d.action_from='home精选'
             AND d.action='on_click_card'
             AND d.click_time>'{click_date}'
             AND d.click_time<'{click_date_tomorrow}'
             AND f.tag_type+0 <'4'+0
             AND SUBSTR(MD5(d.cl_id),-1,1) IN ('0','1','2','3','4','a','b','c','e')) tmp2
        GROUP BY cl_id
    """.format(click_date=click_date, click_date_tomorrow=click_date_tomorrow)
    mysql_results = get_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', sql_device_info_yesterday)
    device_ids_info = [(i["device_id"], int(i["click_time"])) for i in mysql_results]
    all_device_action_tags = {i["device_id"]: [int(tag) for tag in i["tag_ids"].split(",")] for i in mysql_results}
    return device_ids_info, all_device_action_tags


def get_user_service_click_info_yesterday(click_date, click_date_tomorrow):
    # 获取昨天在美购首页有过点击的用户设备id,点击的美购,美购对应的tag
    # 一个用户对应多个美购,一个美购对应多个tag
    sql_device_info_yesterday = """
            SELECT cl_id device_id,
                   max(click_time) AS click_time,
                   group_concat(DISTINCT `service_id` separator ',') service_ids,
                   group_concat(DISTINCT `tag_id` separator ',') tag_ids
            FROM
              (SELECT d.cl_id,
                      d.service_id,
                      unix_timestamp(d.click_time) AS click_time,
                      e.tag_id
               FROM jerry_test.user_click_service_log d
               LEFT JOIN eagle.src_zhengxing_api_servicetag e ON d.service_id = e.service_id
               LEFT JOIN eagle.src_zhengxing_api_tag f ON e.tag_id = f.id
               WHERE d.action_from='welfare_home_list_item'
                 AND d.action='goto_welfare_detail'
                 AND d.click_time>'{click_date}'
                 AND d.click_time<'{click_date_tomorrow}'
                 AND f.tag_type+0 <'4'+0
                 AND SUBSTR(MD5(d.cl_id),-1,1) IN ('0','1','2','3','4','a','b','c','e')) tmp2
            GROUP BY cl_id
        """.format(click_date=click_date, click_date_tomorrow=click_date_tomorrow)
    mysql_results = get_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', sql_device_info_yesterday)
    device_ids_info = [(i["device_id"], int(i["click_time"])) for i in mysql_results]
    all_device_action_tags = {i["device_id"]: [int(tag) for tag in i["tag_ids"].split(",")] for i in mysql_results}
    return device_ids_info, all_device_action_tags


if __name__ == '__main__':
    try:
        parser = argparse.ArgumentParser(description='画像匹配度的统计')
        my_yesterday = str(datetime.date.today() - datetime.timedelta(days=1))
        parser.add_argument("-o", "--order_date", type=str, dest="order_date", default=my_yesterday, help="统计的行为日期")
        parser.add_argument("-log1", "--log1_file", type=str, dest="portrait_stat_log_path",
                            default="portrait_stat.log", help="画像统计的日志地址")
        parser.add_argument("-log2", "--log2_file", type=str, dest="debug_portrait_stat_log_path",
                            default="debug_portrait_stat.log", help="画像统计的日志地址")
        parser.add_argument("-t", "--top", type=int, dest="portrait_top_n", default=3, help="选取画像的前n个tag去统计匹配度")
        parser.add_argument("-c", "--coincide", type=int, dest="coincide_n", default=1, help="选取n个tag重合个数作为判断是否匹配的阈值")
        parser.add_argument("-v", "--version", type=int, dest="version", default=1, help="选取翔宇(0),英赫(1)版本进行统计")
        parser.add_argument("-e", "--exponential", type=int, dest="exponential", default=0, help="是否采用指数衰减")
        parser.add_argument("-n", "--normalization_size", type=int, dest="normalization_size", default=7,
                            help="天数差归一化的区间")
        parser.add_argument("-d", "--decay_days", type=int, dest="decay_days", default=30, help="分数衰减的天数")
        parser.add_argument("-a", "--action_type", dest="action_type", nargs='+', help="计算匹配度的行为")
        parser.add_argument("-s", "--save_tidb", type=int, dest="save_tidb", default=1, help="统计结果是否存tidb")
        args = parser.parse_args()
        order_date = args.order_date
        order_date_tomorrow = str(datetime.datetime.strptime(order_date, '%Y-%m-%d') + datetime.timedelta(days=1))
        portrait_stat_log_path = args.portrait_stat_log_path
        debug_portrait_stat_log_path = args.debug_portrait_stat_log_path
        cmd_portrait_top_n = args.portrait_top_n
        cmd_coincide_n = args.coincide_n
        version = args.version
        exponential = args.exponential
        normalization_size = args.normalization_size
        decay_days = args.decay_days
        action_type = args.action_type
        save_tidb = args.save_tidb

        LOG_DIR = "/home/gmuser/gyz/log/"
        my_today = str(datetime.date.today())

        setup_logger("log1", LOG_DIR + portrait_stat_log_path)
        setup_logger("log2", LOG_DIR + debug_portrait_stat_log_path)
        log1 = logging.getLogger('log1')
        log2 = logging.getLogger('log2')

        # 获取搜索词及其近义词对应的tag
        all_word_tags = get_all_word_tags()
        all_tag_tag_type = get_all_tag_tag_type()

        # 3级tag对应的2级tag
        all_3tag_2tag = get_all_3tag_2tag()

        for action in action_type:
            # 获取昨天产生行为的设备id、以及行为对应的tag
            action_type_detail = ""
            device_ids_lst = list()
            all_device_action_tags = dict()
            if action == "order":
                device_ids_lst, all_device_action_tags = get_user_order_info_yesterday(order_date, order_date_tomorrow)
                action_type_detail = "昨天下单了的用户"
            elif action == "diary":
                device_ids_lst, all_device_action_tags = get_user_diary_click_info_yesterday(order_date,
                                                                                             order_date_tomorrow)
                action_type_detail = "昨天在首页精选点击了日记的用户"
            elif action == "service":
                device_ids_lst, all_device_action_tags = get_user_service_click_info_yesterday(order_date,
                                                                                               order_date_tomorrow)
                action_type_detail = "昨天在美购首页点击了美购的用户"
            else:
                break

            # tags扩展2级tags
            all_device_action_tags2 = dict()
            for device in all_device_action_tags:
                tags = all_device_action_tags[device]
                for tag in tags:
                    tags2 = all_3tag_2tag.get(tag, [])
                    tags += tags2
                all_device_action_tags2[device] = tags

            # 用户的去除支付行为的画像
            all_device_portrait_result = dict()
            debug_all_device_portrait_result = dict()
            for order_info in device_ids_lst:
                device = order_info[0]
                pay_time = order_info[1]
                portrait_result, debug_portrait_result = get_user_service_portrait_not_alipay(device, all_word_tags,
                                                                                              all_tag_tag_type, pay_time,
                                                                                              all_3tag_2tag,
                                                                                              version=version,
                                                                                              exponential=exponential,
                                                                                              normalization_size=normalization_size,
                                                                                              decay_days=decay_days,
                                                                                              size=-1)
                all_device_portrait_result[device] = portrait_result
                debug_all_device_portrait_result[device] = debug_portrait_result

            # 比较两个tag列表的重合率
            result = get_2_tags_coincide_rate(all_device_action_tags2, all_device_portrait_result, cmd_portrait_top_n,
                                              cmd_coincide_n)

            # 有画像没匹配上的用户的画像信息
            no_coincide_devices = result["not_coincide_have_portrait_device_ids"]
            no_coincide_devices_debug = dict()
            log2.info({"统计日期": my_today})
            log2.info({"参数信息": args})
            log2.info({"版本": "英赫版" if version == 1 else "翔宇版"})
            log2.info({"统计用户": action_type_detail})
            for device in no_coincide_devices:
                no_coincide_devices_debug = dict()
                device_portrait_n = all_device_portrait_result[device][:args.portrait_top_n]
                device_order_tags = all_device_action_tags2[device]
                debug_device_portrait_result = debug_all_device_portrait_result[device]
                no_coincide_devices_debug[device] = {
                    "画像的前{top_n}个tag".format(top_n=args.portrait_top_n): [debug_device_portrait_result[tag] for tag in
                                                                          device_portrait_n],
                    "用户行为对应的tag": [debug_device_portrait_result.get(tag, dict()) for tag in device_order_tags]
                }
                log2.info("-" * 66)
                log2.info(no_coincide_devices_debug)
            log2.info("\n"*6)


            # 统计画像更新的耗时和更新的设备数
            sql = "select count(*) from user_service_portrait_tags where stat_date='{my_today}'".format(my_today=my_today)
            portrait_device_count = get_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', sql)
            with open(LOG_DIR + "dist_portrait.log", 'r') as f:
                lines = f.readlines()
                start_datetime_str = lines[0][:19]
                end_datetime_str = lines[-1][:19]
            start_datetime = datetime.datetime.strptime(start_datetime_str, '%Y-%m-%d %H:%M:%S')
            end_datetime = datetime.datetime.strptime(end_datetime_str, '%Y-%m-%d %H:%M:%S')
            time_consuming = (end_datetime - start_datetime).seconds / 60

            log1.info({"画像信息统计日期": my_today})
            log1.info({"参数信息": args})
            log1.info({"版本": "英赫版" if version == 1 else "翔宇版"})
            log1.info({"统计用户": action_type_detail})
            log1.info({"画像更新耗时(分钟)": time_consuming})
            log1.info({"画像更新的设备数": portrait_device_count[0]["count(*)"]})
            log1.info("")
            log1.info({"统计画像匹配度所用数据的日期": order_date})
            log1.info({"统计画像的选取前n个tag": cmd_portrait_top_n})
            log1.info({"重合个数": cmd_coincide_n})
            log1.info({"有行为的人数": result["device_count"]})
            log1.info({"比对的上的人数": result["coincide_count"]})
            log1.info({"匹配度": result["coincide_rate"]})
            log1.info({"比对不上的有画像的人数": result["not_coincide_have_portrait_count"]})
            log1.info({"比对不上的无画像的人数": result["not_coincide_no_portrait_count"]})
            log1.info("="*66)

            # 统计数据进tidb
            if save_tidb:
                tplt = "insert into user_portrait_tags_evalution values(null,'{0}','{1}','{2}',{3},{4},{5},{6},{7})"
                stat_date = order_date.replace("-", "")
                insert_sql = tplt.format(stat_date, "英赫版" if version == 1 else "翔宇版", action_type_detail,
                                         result["device_count"], result["coincide_count"], result["coincide_rate"],
                                         result["not_coincide_have_portrait_count"],
                                         result["not_coincide_no_portrait_count"])
                write_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', insert_sql)
    except Exception as e:
        print(e)