from __future__ import absolute_import from __future__ import division from __future__ import print_function import pymysql import smtplib from email.mime.text import MIMEText from email.utils import formataddr from email.mime.multipart import MIMEMultipart from email.mime.application import MIMEApplication import redis import datetime from pyspark import SparkConf import time from pyspark.sql import SparkSession import json import numpy as np import pandas as pd from pyspark.sql.functions import lit from pyspark.sql.functions import concat_ws def compute_henqiang(x): score = 15-x*((15-0.5)/180) if score>0.5: return score else: return 0.5 def compute_jiaoqiang(x): score = 12-x*(12/180) if score>0.5: return score else: return 0.5 def compute_ruoyixiang(x): score = 5-x*((5-0.5)/180) if score>0.5: return score else: return 0.5 def compute_validate(x): score = 10-x*((10-0.5)/180) if score>0.5: return score else: return 0.5 def tag_list2dict(lst, size): result = [] if lst: for i in lst: tmp = dict() tmp["content"] = i["tag_id"] if isinstance(i['tag_id'], int): tmp["type"] = "tag" else: tmp["type"] = "search_word" tmp["score"] = i["tag_score"] result.append(tmp) return result[:size] def get_user_tag_score(cl_id, all_log_df, size=10): user_log_df = all_log_df.loc[all_log_df['cl_id'] == cl_id] if not user_log_df.empty: user_log_df["tag_id"] = np.where(user_log_df["action"] == "do_search",user_log_df["tag_referrer"],user_log_df["tag_id"]) user_log_df["days_diff_now"] = round((int(time.time())-user_log_df["time"]) / (24*60*60)) user_log_df["tag_score"] = user_log_df.apply( lambda x: compute_henqiang(x.days_diff_now) if x.score_type == "henqiang" else ( compute_jiaoqiang(x.days_diff_now) if x.score_type == "jiaoqiang" else ( compute_ruoyixiang(x.days_diff_now) if x.score_type == "ruoyixiang" else compute_validate(x.days_diff_now))), axis=1) finally_score = user_log_df.sort_values(by=["tag_score","time"],ascending=False) finally_score.drop_duplicates(subset="tag_id", inplace=True) finally_score_lst = finally_score[["tag_id","tag_score"]].to_dict('record') tag_id_list = tag_list2dict(finally_score_lst, size) return cl_id, tag_id_list def send_email(app,id,e): # 第三方 SMTP 服务 mail_host = 'smtp.exmail.qq.com' # 设置服务器 mail_user = "gaoyazhe@igengmei.com" # 用户名 mail_pass = "VCrKTui99a7ALhiK" # 口令 sender = 'gaoyazhe@igengmei.com' receivers = ['gaoyazhe@igengmei.com'] # 接收邮件,可设置为你的QQ邮箱或者其他邮箱 e = str(e) msg = MIMEMultipart() part = MIMEText('app_id:'+id+':fail', 'plain', 'utf-8') msg.attach(part) msg['From'] = formataddr(["gaoyazhe", sender]) # 括号里的对应收件人邮箱昵称、收件人邮箱账号 msg['To'] = ";".join(receivers) # message['Cc'] = ";".join(cc_reciver) msg['Subject'] = 'spark streaming:app_name:'+app with open('error.txt','w') as f: f.write(e) f.close() part = MIMEApplication(open('error.txt', 'r').read()) part.add_header('Content-Disposition', 'attachment', filename="error.txt") msg.attach(part) try: smtpObj = smtplib.SMTP_SSL(mail_host, 465) smtpObj.login(mail_user, mail_pass) smtpObj.sendmail(sender, receivers, msg.as_string()) except smtplib.SMTPException: print('error') if __name__ == '__main__': try: db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test', charset='utf8') cur_jerry_test = db_jerry_test.cursor() # 获取所有用户的设备id sql_device_ids = "select distinct cl_id from user_new_tag_log" cur_jerry_test.execute(sql_device_ids) # todo 放开用户量 device_ids_lst = [i[0] for i in cur_jerry_test.fetchall()][:10] # 获取所有用户的行为日志 sql_all_log = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log" cur_jerry_test.execute(sql_all_log) all_log = cur_jerry_test.fetchall() db_jerry_test.close() all_log_df = pd.DataFrame(list(all_log)) all_log_df.columns = ["time", "cl_id", "score_type","tag_id","tag_referrer","action"] # rdd sparkConf = SparkConf().set("spark.hive.mapred.supports.subdirectories", "true") \ .set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true") \ .set("spark.tispark.plan.allow_index_double_read", "false") \ .set("spark.tispark.plan.allow_index_read", "true") \ .set("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") \ .set("spark.tispark.pd.addresses", "172.16.40.158:2379").set("spark.io.compression.codec", "lzf") \ .set("spark.driver.maxResultSize", "8g").set("spark.sql.avro.compression.codec", "snappy") spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate() spark.sparkContext.setLogLevel("WARN") device_ids_lst_rdd = spark.sparkContext.parallelize(device_ids_lst) gm_kv_cli = redis.Redis(host="172.16.40.135", port=5379, db=6, socket_timeout=2000) result = device_ids_lst_rdd.repartition(100).map(lambda x: get_user_tag_score(x, all_log_df)) a = result.collect() print(a) stat_date = datetime.datetime.today().strftime('%Y-%m-%d') for i in a: insert_sql = "insert into user_portrait_tags values({stat_date},{cl_id},{tag_list})"\ .format(stat_date=stat_date, cl_id=i[0], tag_list=json.dumps(i[1])) cur_jerry_test.execute(insert_sql) db_jerry_test.commit() db_jerry_test.close() # result_last = result_rename.withColumn("stat_date", lit(stat_date)) # result_last.show() # df = result_last.select("stat_date", "cl_id", concat_ws(',', 'tag_list').alias("tag_list")) # df.show() # df.write.jdbc( # mode="overwrite", # url="jdbc:mysql://172.16.40.158:4000/jerry_test?user=root&password=3SYz54LS9#^9sBvC&useSSL=true", # table="user_portrait_tags", # properties={"driver": 'com.mysql.jdbc.Driver'}) except Exception as e: print(e)