import pandas as pd import pymysql from sklearn.preprocessing import MinMaxScaler from sqlalchemy import create_engine def con_sql(db,sql): cursor = db.cursor() try: cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(list(result)) except Exception: print("发生异常", Exception) df = pd.DataFrame() finally: db.close() return df def normal(): db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') sql = "select * from device_read_time" df = con_sql(db, sql) df = df.rename(columns={0:"device_id",1:"kongbai",2:"eye",3:"simi",4:"zitizhifang",5:"banyongjiu",6:"teeth", 7:"kouchun",8:"ear",9:"nose",10:"banyongjiuzhuang",11:"qita",12:"lunkuo", 13:"shoushen",14:"skin",16:"shenghuo", 17:"breast",18:"hair",19:"kangshuai",20:"shili",21:"chanhou",22:"zhushe"}) # device_id = df[["device_id"]] # df = df.drop("device_id",axis=1) # minMax = MinMaxScaler() # result = pd.DataFrame(minMax.fit_transform(df),columns=["0","1","10","1024","1080","11", # "12","13","2","2054","2214","3","4","5","6933", # "7","9","922","929","971","992"]) # result = device_id.join(result) l = list(df.columns) l.remove("device_id") df["sum"] = df.sum(axis=1) for i in l: df[i] = df[i]/df["sum"] df = df.drop("sum",axis=1) yconnect = create_engine('mysql+pymysql://root:3SYz54LS9#^9sBvC@10.66.157.22:4000/jerry_test?charset=utf8') pd.io.sql.to_sql(df, "device_read_time_normal", yconnect, schema='jerry_test', if_exists='fail', index=False) if __name__ == "__main__": normal()