import xlearn as xl from config import * def train(): print("Start training") ffm_model = xl.create_ffm() ffm_model.setTrain(DIRECTORY_PATH + "train{0}-{1}.csv".format(DATA_START_DATE, VALIDATION_DATE)) ffm_model.setValidate(DIRECTORY_PATH + "validation{0}.csv".format(VALIDATION_DATE)) param = {'task': 'binary', 'lr': lr, 'lambda': l2_lambda, 'metric': 'auc'} ffm_model.fit(param, DIRECTORY_PATH + "model_{0}-{1}_lr{2}_lambda{3}.out".format(DATA_START_DATE, DATA_END_DATE, lr, l2_lambda)) print("predicting") ffm_model.setTest(DIRECTORY_PATH + "test{0}.csv".format(TEST_DATE)) ffm_model.setSigmoid() ffm_model.predict(DIRECTORY_PATH + "model_{0}-{1}_lr{2}_lambda{3}.out".format(DATA_START_DATE, DATA_END_DATE, lr, l2_lambda), DIRECTORY_PATH + "testset{0}_output_model_{1}-{2}_lr{3}_lambda{4}.txt".format(TEST_DATE, DATA_START_DATE, DATA_END_DATE, lr, l2_lambda))