from config import *
import pandas as pd
import pickle
import xlearn as xl
from userProfile import *
import time
from utils import *
import os


# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(user_profile):
    file_name = DIRECTORY_PATH + "diaryTestSet/{0}DiaryTop3000.csv".format(user_profile['city_id'])
    data = pd.read_csv(file_name)
    data["device_id"] = user_profile['device_id']
    now = datetime.now()
    data["hour"] = now.hour
    data["minute"] = now.minute
    data.loc[data["hour"] == 0, ["hour"]] = 24
    data.loc[data["minute"] == 0, ["minute"]] = 60
    data["hour"] = data["hour"].astype("category")
    data["minute"] = data["minute"].astype("category")
    # 虽然预测y,但ffm转化需要y,并不影响预测结果
    data["y"] = 0
    data = data.drop("city_id", axis=1)
    return data


# 把ffm.pkl load进来,将上面的表转化为ffm格式
def transform_ffm_format(df, device_id):
    with open(DIRECTORY_PATH+"ffm.pkl","rb") as f:
        ffm_format_pandas = pickle.load(f)
        data = ffm_format_pandas.transform(df)
        now = datetime.now().strftime("%Y-%m-%d-%H-%M")
        predict_file_name = DIRECTORY_PATH + "result/{0}_{1}DiaryTop3000.csv".format(device_id, now)
        data.to_csv(predict_file_name, index=False,header=None)
        print("成功将ffm预测文件写到服务器")
        return predict_file_name


# 将模型加载,预测,把预测日记的概率值按照降序排序,存到一个表里
def predict(user_profile):
    instance = feature_en(user_profile)
    instance_file_path = transform_ffm_format(instance, user_profile["device_id"])

    ffm_model = xl.create_ffm()
    ffm_model.setTest(instance_file_path)
    ffm_model.setSigmoid()

    ffm_model.predict(DIRECTORY_PATH + "model.out",
                      DIRECTORY_PATH + "result/{0}_output.txt".format(user_profile['device_id']))
    print("该用户预测结束")
    predict_save_to_local(user_profile, instance)

# 将预测结果与device_id 进行拼接,并按照概率降序排序
def wrapper_result(user_profile, instance):
    proba = pd.read_csv(DIRECTORY_PATH +
                                "result/{0}_output.txt".format(user_profile['device_id']), header=None)
    proba = proba.rename(columns={0: "prob"})
    proba["cid"] = instance['cid']
    proba = proba.sort_values(by="prob", ascending=False)
    proba = proba.head(50)
    return proba

# 预测候选集保存到本地
def predict_save_to_local(user_profile, instance):
    proba = wrapper_result(user_profile, instance)
    proba.loc[:, "url"] = proba["cid"].apply(lambda x: "http://m.igengmei.com/diary_book/" + str(x[6:]) + '/')
    proba.to_csv(DIRECTORY_PATH + "result/feed_{}".format(user_profile['device_id']), index=False)
    print("成功将预测候选集保存到本地")


def router(device_id):
    user_profile, not_exist = fetch_user_profile(device_id)
    if not_exist:
        print('Sorry, we don\'t have you.')
    else:
        predict(user_profile)


# 多进程预测
def multi_predict(predict_list,processes=12):
    pool = Pool(processes)
    for device_id in predict_list:
        start = time.time()
        pool.apply_async(router, (device_id,))
        end = time.time()
        print("该用户{}预测耗时{}秒".format(device_id, (end - start)))

    pool.close()
    pool.join()


if __name__ == "__main__":
    # TODO 如果耗时小于一分钟,下一次取到的device_id和上一次相同。还有一种情况,一个用户持续活跃,会被重复预测
    while True:
        empty,device_id_list = get_active_users()
        if empty:
            for eachFile in os.listdir("/tmp"):
                if "xlearn" in eachFile:
                    os.remove("/tmp" + "/" + eachFile)
            time.sleep(58)
        else:
            old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
            # 求活跃用户和老用户的交集,也就是只预测老用户
            predict_list = list(set(device_id_list) & set(old_device_id_list))
            multi_predict(predict_list)


            #TODO 上线前把预测流程中的计时器、打印代码删掉或者注释,因为预测对性能要求高,能少一条代码语句就少一条