from sqlalchemy import create_engine
import pandas as pd
import pymysql
import MySQLdb
import time

def con_sql(sql):
    """
    :type sql : str
    :rtype : tuple
    """
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    db.close()
    return result

def set_join(lst):
    return ','.join(set(lst))

def main():
    sql = "select device_id,city_id,cid from esmm_data2ffm_infer_native"
    result = con_sql(sql)
    dct = {"uid":[],"city":[],"cid_id":[]}
    for i in result:
        dct["uid"].append(i[0])
        dct["city"].append(i[1])
        dct["cid_id"].append(i[2])

    df1 = pd.read_csv("/home/gaoyazhe/data/native/pred.txt",sep='\t',header=None,names=["ctr","cvr"])
    df2 = pd.DataFrame(dct)
    df2["ctr"],df2["cvr"] = df1["ctr"],df1["cvr"]
    df3 = df2.groupby(by=["uid","city"]).apply(lambda x: x.sort_values(by="cvr",ascending=False)).reset_index(drop=True).groupby(by=["uid","city"]).agg({'cid_id':set_join}).reset_index(drop=False)
    ctime = int(time.time())
    df3["time"] = ctime
    df3.columns = ["device_id","city_id","native_queue","time"]
    print("native_device_count",df3.shape)


    sql_nearby = "select device_id,city_id,cid from esmm_data2ffm_infer_nearby"
    result = con_sql(sql_nearby)
    dct = {"uid":[],"city":[],"cid_id":[]}
    for i in result:
        dct["uid"].append(i[0])
        dct["city"].append(i[1])
        dct["cid_id"].append(i[2])

    df1 = pd.read_csv("/home/gaoyazhe/data/nearby/pred.txt",sep='\t',header=None,names=["ctr","cvr"])
    df2 = pd.DataFrame(dct)
    df2["ctr"],df2["cvr"] = df1["ctr"],df1["cvr"]
    df4 = df2.groupby(by=["uid","city"]).apply(lambda x: x.sort_values(by="cvr",ascending=False)).reset_index(drop=True).groupby(by=["uid","city"]).agg({'cid_id':set_join}).reset_index(drop=False)
    df4.columns = ["device_id","city_id","nearby_queue"]
    print("nearby_device_count",df4.shape)

    #union
    df_all = pd.merge(df3,df4,on=['device_id','city_id'],how='outer').fillna("")
    print("union_device_count",df_all.shape)



    host='10.66.157.22'
    port=4000
    user='root'
    password='3SYz54LS9#^9sBvC'
    db='jerry_test'
    charset='utf8'

    engine = create_engine(str(r"mysql+mysqldb://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db))

    try:
        df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='replace',index=False)
    except Exception as e:
        print(e)



if __name__ == '__main__':
    main()