import pickle
import xlearn as xl
import pandas as pd
import pymysql
from datetime import datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import utils
import warnings
from multiprocessing import Pool
from config import *
import json
from sklearn.preprocessing import MinMaxScaler
import time
from userProfile import get_active_users
import os

def test_con_sql(device_id):
    db = pymysql.connect(host='rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com', port=3306, user='doris',
                         passwd='o5gbA27hXHHm', db='doris_prod')

    cursor = db.cursor()
    sql = "select native_queue,nearby_queue,nation_queue,megacity_queue from device_diary_queue " \
          "where device_id = '{}';".format(device_id)
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    if not df.empty:

        df = df.rename(columns={0: "native_queue", 1: "nearby_queue", 2: "nation_queue", 3: "megacity_queue"})

        native_queue = df.loc[0, "native_queue"].split(",")
        native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
        native_queue = list(set(native_queue)&set(data_set_cid))

        nearby_queue = df.loc[0, "nearby_queue"].split(",")
        nearby_queue = list(map(lambda x: "diary|" + str(x), nearby_queue))
        nearby_queue = list(set(nearby_queue)&set(data_set_cid))

        nation_queue = df.loc[0, "nation_queue"].split(",")
        nation_queue = list(map(lambda x: "diary|" + str(x), nation_queue))
        nation_queue = list(set(nation_queue)&set(data_set_cid))

        megacity_queue = df.loc[0, "megacity_queue"].split(",")
        megacity_queue = list(map(lambda x: "diary|" + str(x), megacity_queue))
        megacity_queue = list(set(megacity_queue)&set(data_set_cid))

        db.close()

        return True,native_queue, nearby_queue, nation_queue, megacity_queue
    else:
        print("该用户对应的日记队列为空")
        return False,[],[],[],[]


 # 更新前获取最新的native_queue
def get_native_queue(device_id):
    db = pymysql.connect(host='rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com', port=3306, user='doris',
                         passwd='o5gbA27hXHHm', db='doris_prod')
    cursor = db.cursor()
    sql = "select native_queue from device_diary_queue where device_id = '{}';".format(device_id)
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    if not df.empty:
        native_queue = df.loc[0,0].split(",")
        native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
        native_queue = list(set(native_queue) & set(data_set_cid))
        db.close()
        # print("成功获取native_queue")
        return native_queue
    else:
        return None


# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(x_list, device_id):
    data = pd.DataFrame(x_list)
    # 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
    data = data.rename(columns={0: "cid"})
    data["device_id"] = device_id
    now = datetime.now()
    data["hour"] = now.hour
    data["minute"] = now.minute
    data.loc[data["hour"] == 0, ["hour"]] = 24
    data.loc[data["minute"] == 0, ["minute"]] = 60
    data["hour"] = data["hour"].astype("category")
    data["minute"] = data["minute"].astype("category")
    # 虽然预测y,但ffm转化需要y,并不影响预测结果
    data["y"] = 0
    # print("done 特征工程")

    return data


# 把ffm.pkl load进来,将上面的表转化为ffm格式
def transform_ffm_format(df,queue_name):
    with open(DIRECTORY_PATH + "ffm.pkl", "rb") as f:
        ffm_format_pandas = pickle.load(f)
        data = ffm_format_pandas.native_transform(df)
        predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name)
        data.to_csv(predict_file_name, index=False, header=None)
        # print("done ffm")
        return predict_file_name


# 将模型加载,预测
def predict(queue_name, x_list):
    data = feature_en(x_list,device_id)
    data_file_path = transform_ffm_format(data,queue_name)

    ffm_model = xl.create_ffm()
    ffm_model.setTest(data_file_path)
    ffm_model.setSigmoid()

    ffm_model.predict(DIRECTORY_PATH + "model.out",
                      DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id,queue_name))
    return save_result(queue_name, x_list)


def save_result(queue_name, x_list):
    score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id,queue_name), header=None)
    # print(score_df)
    mm_scaler = MinMaxScaler()
    mm_scaler.fit(score_df)
    score_df = pd.DataFrame(mm_scaler.transform(score_df))
    print("概率前十行:")
    # print(score_df)
    score_df = score_df.rename(columns={0: "score"})

    score_df["cid"] = x_list


    return merge_score(x_list, score_df)



def merge_score(x_list, score_df):
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root',passwd='3SYz54LS9#^9sBvC', db='eagle')
    cursor = db.cursor()

    # 去除diary_id 前面的"diary|"
    x_list = tuple(list(map(lambda x:x[6:],x_list)))

    # TODO 把id也取下来,这样可以解决分数不匹配的问题
    sql = "select score from biz_feed_diary_score where diary_id in {};".format(x_list)
    cursor.execute(sql)
    result = cursor.fetchall()
    score = pd.DataFrame(list(result))
    # print("数据库日记表前十行")
    # # print(score)
    score_list = score[0].values.tolist()

    db.close()

    score_df["score"] = score_df["score"] + score_list

    return update_dairy_queue(score_df)



def update_dairy_queue(score_df):
    diary_id = score_df["cid"].values.tolist()
    video_id = []
    x = 1
    while x < len(diary_id):
        video_id.append(diary_id[x])
        x += 5
    if len(video_id)>0:
        not_video_id = list(set(diary_id) - set(video_id))
        not_video_id_df = score_df.loc[score_df["cid"].isin(not_video_id)]
        not_video_id_df = not_video_id_df.sort_values(by="score", ascending=False)
        video_id_df = score_df.loc[score_df["cid"].isin(video_id)]
        video_id_df = video_id_df.sort_values(by="score", ascending=False)
        not_video_id = not_video_id_df["cid"].values.tolist()
        video_id = video_id_df["cid"].values.tolist()
        diary_id = not_video_id
        i = 1
        for j in video_id:
            diary_id.insert(i, j)
            # TODO 下面的3是测试用的,如果上线后,把3改成5
            i += 3


        return diary_id
    else:
        score_df = score_df.sort_values(by="score", ascending=False)

        return score_df["cid"].values.tolist()



def update_sql_dairy_queue(queue_name, diary_id):
    db = pymysql.connect(host='rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com', port=3306, user='doris',
                         passwd='o5gbA27hXHHm', db='doris_prod')
    cursor = db.cursor()
    ## 去除diary_id 前面的"diary|"
    diary_id = json.dumps(list(map(lambda x:x[6:],diary_id)))
    sql = "update device_diary_queue set {}='{}' where device_id = '{}'".format(queue_name, diary_id, device_id)
    cursor.execute(sql)
    db.close()
    # print("成功写入")


def multi_update(key, name_dict,native_queue_list):
    if name_dict[key] != []:
        diary_id = predict(key, name_dict[key])


        if get_native_queue(device_id) == native_queue_list:
            update_sql_dairy_queue(key, diary_id)
            print("更新结束")
        else:
            print("不需要更新日记队列")


def user_update(device_id):
    not_empty,native_queue_list, nearby_queue_list, nation_queue_list, megacity_queue_list = test_con_sql(device_id)
    if not_empty:
        name_dict = {"native_queue": native_queue_list, "nearby_queue": nearby_queue_list,
                     "nation_queue": nation_queue_list, "megacity_queue": megacity_queue_list}
        pool = Pool(4)
        for key in name_dict.keys():
            pool.apply_async(multi_update, (key, name_dict,native_queue_list,))
        pool.close()
        pool.join()

if __name__ == "__main__":
    # while True:
    empty,device_id_list = get_active_users()
    if empty:
        for eachFile in os.listdir("/tmp"):
            if "xlearn" in eachFile:
                os.remove("/tmp" + "/" + eachFile)
        time.sleep(58)
    else:
        old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
        # 求活跃用户和老用户的交集,也就是只预测老用户
        predict_list = list(set(device_id_list) & set(old_device_id_list))
        predict_list.extend(["B2F0665E-4375-4169-8FE3-8A26A1CFE248","AB20292B-5D15-4C44-9429-1C2FF5ED26F6","358035085192742"])

        # 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
        # predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
        start = time.time()
        warnings.filterwarnings("ignore")
        data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()

        if predict_list != []:
            for device_id in predict_list:
                user_update(device_id)
        else:
            print("该列表是新用户,不需要预测")
        end = time.time()
        print("在不在")
        print("358035085192742" in predict_list)
        print("AB20292B-5D15-4C44-9429-1C2FF5ED26F6" in predict_list)
        print("B2F0665E-4375-4169-8FE3-8A26A1CFE248" in predict_list)
        print(predict_list)
        print(end - start)







    # # TODO 上线后把预测用户改成多进程预测
    # data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
    #
    # device_id = "358035085192742"
    # native_queue_list, nearby_queue_list, nation_queue_list, megacity_queue_list = test_con_sql(device_id)
    # name_dict = {"native_queue": native_queue_list, "nearby_queue": nearby_queue_list,
    #              "nation_queue": nation_queue_list, "megacity_queue": megacity_queue_list}
    #
    # for key in name_dict.keys():
    #     multi_update(key, name_dict)


# predict(key, name_dict[key])
#         score_df = save_result(key, name_dict[key])
#         score_df = merge_score(name_dict[key], score_df)
#         diary_id = update_dairy_queue(score_df)