import datetime import pymysql import pandas as pd def hospital(): sql = "select api.id," \ "h.hospital_id,h.hospital_exposure_pv_30,h.service_exposure_pv_30,h.expert_exposure_pv_30," \ "h.service_ctr_30,h.hospital_ctr_30,h.expert_ctr_30,b.merchant_id," \ "m.doctor_discount_30_days,m.expand_rechange_amount_30," \ "m.service_pv_30,m.expert_pv_30,m.organization_pv_30 " \ "from api_doctor api " \ "left join statistic_hospital_rank_factor h on api.hospital_id = h.hospital_id " \ "left join hippo_merchantrelevance b on api.id = b.doctor_id " \ "left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id " \ "where api.doctor_type = 1 and h.date = '{}' and m.partition_date = '{}';".format(date_str,date_str) db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(list(result)) name = ["doctor_id","hospital_id","hospital_exposure_pv_30","service_exposure_pv_30", "expert_exposure_pv_30","service_ctr_30","hospital_ctr_30","expert_ctr_30","merchant_id", "doctor_discount_30_days","expand_rechange_amount_30","service_pv_30", "mexpert_pv_30","organization_pv_30"] df = df.rename(columns=dict(zip(list(range(len(name))), name))) print("df") print(df.shape) for i in ["hospital_exposure_pv_30","service_exposure_pv_30","expert_exposure_pv_30", "service_ctr_30","hospital_ctr_30","expert_ctr_30", "doctor_discount_30_days","service_pv_30","mexpert_pv_30","organization_pv_30", "expand_rechange_amount_30"]: df[i] = df[i].astype("float") df["all_exposure"] = df["hospital_exposure_pv_30"] + df["service_exposure_pv_30"] + df["expert_exposure_pv_30"] df = df[~df["all_exposure"].isin([0.0])] print("filter 1") print(df.shape) df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"] df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \ df["hospital_exposure_pv_30"]/ df["all_exposure"] * df["hospital_ctr_30"] + \ df["expert_exposure_pv_30"]/df["all_exposure"] * df["expert_ctr_30"] df.loc[df["doctor_discount_30_days"] < 0, ["doctor_discount_30_days"]] = 0 df.loc[df["expand_rechange_amount_30"] < 0, ["expand_rechange_amount_30"]] = 0 df.loc[df["tmp"] <= 3000, ["tmp"]] = 3000 df["commission"] = df["doctor_discount_30_days"]/df["tmp"] df["cpt"] = df["expand_rechange_amount_30"]/df["tmp"] df.loc[df["all_exposure"] <= 3000, ["ctr"]] = 0.01 df.loc[df["ctr"] < 0.01, ["ctr"]] = 0.01 df.loc[df["ctr"] > 0.2, ["ctr"]] = 0.2 df.loc[df["cpt"] > 3, ["cpt"]] = 3 df.loc[df["cpt"] < 0.01, ["cpt"]] = 0.01 df.loc[df["commission"] > 3, ["commission"]] = 3 df.loc[df["commission"] < 0.01, ["commission"]] = 0.01 df["score"] = df["ctr"] ** 0.5 * (df["commission"] + df["cpt"]) columns = ["doctor_id","score","ctr","commission","cpt","hospital_id","hospital_exposure_pv_30", "service_exposure_pv_30","expert_exposure_pv_30", "service_ctr_30","hospital_ctr_30","expert_ctr_30","merchant_id", "doctor_discount_30_days","service_pv_30","mexpert_pv_30","organization_pv_30", "expand_rechange_amount_30"] data = df.loc[:, columns] data = data.drop_duplicates() print(data.shape) data.to_csv('/tmp/41_hospital.csv',index=False) def new_doctor(): sql = "select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30," \ "d.expert_pv_30,b.merchant_id,m.doctor_discount_30_days,m.expand_rechange_amount_30," \ "m.service_pv_30,m.expert_pv_30,m.organization_pv_30 from statistic_doctor_rank_factor d " \ "left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \ "left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id " \ "where d.partition_date = '{}' and m.partition_date = '{}';".format(date_str,date_str) db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') cursor = db.cursor() cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(list(result)) print(df.shape) name = ["doctor_id", "service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30", "merchant_id", "doctor_discount_30_days", "expand_rechange_amount_30", "service_pv_30", "mexpert_pv_30", "organization_pv_30"] df = df.rename(columns=dict(zip(list(range(len(name))), name))) for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30", "doctor_discount_30_days", "expand_rechange_amount_30", "service_pv_30", "mexpert_pv_30", "organization_pv_30"]: df[i] = df[i].astype("float") df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"] df = df[~df["expert_exposure_pv_30"].isin([0.0])] print("expert_exposure_pv_30") print(df.shape) df = df[~df["all_exposure"].isin([0.0])] print("all_exposure") print(df.shape) df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"] df.loc[df["tmp"] <= 3000, ["tmp"]] = 3000 df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \ df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"]) df.loc[df["doctor_discount_30_days"] < 0, ["doctor_discount_30_days"]] = 0 df.loc[df["expand_rechange_amount_30"] < 0, ["expand_rechange_amount_30"]] = 0 df["commission"] = df["doctor_discount_30_days"]/df["tmp"] df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"] df.loc[df["all_exposure"] <= 3000, ["ctr"]] = 0.01 df.loc[df["ctr"] < 0.01, ["ctr"]] = 0.01 df.loc[df["ctr"] > 0.2, ["ctr"]] = 0.2 df.loc[df["commission"] > 3, ["commission"]] = 3 df.loc[df["commission"] < 0.01, ["commission"]] = 0.01 df.loc[df["pv_ad"] > 3, ["pv_ad"]] = 3 df.loc[df["pv_ad"] < 0.01, ["pv_ad"]] = 0.01 df["score"] = df["ctr"] ** 0.5 * (df["commission"] + df["pv_ad"]) print(df.shape) columns = ["doctor_id","score","ctr","commission","pv_ad","service_exposure_pv_30", "service_ctr_30","expert_exposure_pv_30","expert_pv_30", "merchant_id","doctor_discount_30_days","expand_rechange_amount_30","service_pv_30", "mexpert_pv_30","organization_pv_30"] data = df.loc[:, columns] data = data.drop_duplicates() print(data.shape) data.to_csv('/tmp/41_doctor.csv',index=False) print("doctor end") if __name__ == "__main__": date_str = "20200331" new_doctor() hospital()