import pickle import xlearn as xl import pandas as pd import pymysql from datetime import datetime import utils import warnings from multiprocessing import Pool # 本地测试脚本 # 从测试Tidb数据库的表里获取数据,并转化成df格式 def test_con_sql(device_id): db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work', passwd='workwork', db='doris_test') cursor = db.cursor() sql = "select native_queue,nearby_queue,nation_queue,megacity_queue from device_diary_queue " \ "where device_id = '{}';".format(device_id) cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(list(result)) if not df.empty: df = df.rename(columns={0: "native_queue", 1: "nearby_queue", 2: "nation_queue", 3: "megacity_queue"}) native_queue = df.loc[0, "native_queue"].split(",") native_queue = list(map(lambda x:"diary|"+str(x),native_queue)) nearby_queue = df.loc[0, "nearby_queue"].split(",") nearby_queue = list(map(lambda x: "diary|" + str(x), nearby_queue)) nation_queue = df.loc[0, "nation_queue"].split(",") nation_queue = list(map(lambda x: "diary|" + str(x), nation_queue)) megacity_queue = df.loc[0, "megacity_queue"].split(",") megacity_queue = list(map(lambda x: "diary|" + str(x), megacity_queue)) db.close() return native_queue, nearby_queue, nation_queue, megacity_queue else: print("该用户对应的日记队列为空") # 更新前获取最新的native_queue def get_native_queue(device_id): db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work', passwd='workwork', db='doris_test') cursor = db.cursor() sql = "select native_queue from device_diary_queue where device_id = '{}';".format(device_id) cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(list(result)) if not df.empty: native_queue = df.loc[0,0].split(",") native_queue = list(map(lambda x:"diary|"+str(x),native_queue)) db.close() return native_queue else: return None # 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致 def feature_en(x_list, device_id): data = pd.DataFrame(x_list) data = data.rename(columns={0: "cid"}) data["device_id"] = device_id now = datetime.now() data["hour"] = now.hour data["minute"] = now.minute data.loc[data["hour"] == 0, ["hour"]] = 24 data.loc[data["minute"] == 0, ["minute"]] = 60 data["hour"] = data["hour"].astype("category") data["minute"] = data["minute"].astype("category") # 虽然预测y,但ffm转化需要y,并不影响预测结果 data["y"] = 0 data.to_csv("/Users/mac/utils/result/data.csv",index=False) return data # 把ffm.pkl load进来,将上面的表转化为ffm格式 def transform_ffm_format(df, device_id): with open("/Users/mac/utils/ffm.pkl", "rb") as f: ffm_format_pandas = pickle.load(f) data = ffm_format_pandas.native_transform(df) now = datetime.now().strftime("%Y-%m-%d-%H-%M") predict_file_name = "/Users/mac/utils/result/{0}_{1}.csv".format(device_id, now) data.to_csv(predict_file_name, index=False, header=None) return predict_file_name # 将模型加载,预测,把预测日记的概率值按照降序排序,存到一个表里 def predict(queue_name, x_list, device_id): data = feature_en(x_list,device_id) data_file_path = transform_ffm_format(data, device_id) ffm_model = xl.create_ffm() ffm_model.setTest(data_file_path) ffm_model.setSigmoid() ffm_model.predict("/Users/mac/utils/model.out", "/Users/mac/utils/result/{0}_output.txt".format(queue_name)) save_result(queue_name, x_list) def save_result(queue_name, x_list): score_df = pd.read_csv("/Users/mac/utils/result/{0}_output.txt".format(queue_name), header=None) score_df = score_df.rename(columns={0: "score"}) score_df["cid"] = x_list score_df = score_df.sort_values(by="score",ascending=False) merge_score(x_list, score_df) def merge_score(x_list, score_df): db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work', passwd='workwork', db='zhengxing_test') cursor = db.cursor() score_list = [] for i in x_list: sql = "select score from biz_feed_diary_score where diary_id = '{}';".format(i) cursor.execute(sql) if cursor.execute(sql) != 0: result = cursor.fetchone()[0] score_list.append(result) # 没有查到这个diary_id,默认score值是0 else: score_list.append(0) db.close() score_df["score"] = score_df["score"] + score_list update_dairy_queue(score_df) def update_dairy_queue(score_df): diary_id = score_df["cid"].values.tolist() video_id = [] x = 1 while x < len(diary_id): video_id.append(diary_id[x]) x += 5 if len(video_id)>0: not_video_id = list(set(diary_id) - set(video_id)) not_video_id_df = score_df.loc[score_df["cid"].isin(not_video_id)] not_video_id_df = not_video_id_df.sort_values(by="score", ascending=False) video_id_df = score_df.loc[score_df["cid"].isin(video_id)] video_id_df = video_id_df.sort_values(by="score", ascending=False) not_video_id = not_video_id_df["cid"].values.tolist() video_id = video_id_df["cid"].values.tolist() diary_id = not_video_id i = 1 for j in video_id: diary_id.insert(i, j) i += 5 return diary_id else: score_df = score_df.sort_values(by="score", ascending=False) return score_df["cid"].values.tolist() def update_sql_dairy_queue(queue_name, diary_id, device_id): db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work', passwd='workwork', db='doris_test') cursor = db.cursor() sql = "update device_diary_queue set {}='{}' where device_id = '{}'".format(queue_name, diary_id, device_id) cursor.execute(sql) db.close() def multi_update(key, name_dict, device_id,native_queue_list): diary_id = predict(key, name_dict[key], device_id) if get_native_queue(device_id) == native_queue_list: update_sql_dairy_queue(key, diary_id, device_id) print("更新结束") else: print("不需要更新日记队列") if __name__ == "__main__": warnings.filterwarnings("ignore") # TODO 上线后把预测用户改成多进程预测 device_id = "358035085192742" native_queue_list, nearby_queue_list, nation_queue_list, megacity_queue_list = test_con_sql(device_id) name_dict = {"native_queue": native_queue_list, "nearby_queue": nearby_queue_list, "nation_queue": nation_queue_list, "megacity_queue": megacity_queue_list} pool = Pool(4) for key in name_dict.keys(): pool.apply_async(multi_update,(key,name_dict,device_id,native_queue_list,)) pool.close() pool.join()