import pickle
import xlearn as xl
import pandas as pd
import pymysql
from datetime import datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import utils
import warnings
from multiprocessing import Pool
import json
from sklearn.preprocessing import MinMaxScaler
import time
# from userProfile import get_active_users
import os


def get_video_id():
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='eagle')
    cursor = db.cursor()
    sql = "select diary_id from feed_diary_boost;"
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    video_id = df[0].values.tolist()
    print(video_id[:10])
    db.close()
    return video_id

# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(x_list, device_id):
    data = pd.DataFrame(x_list)
    # 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
    data = data.rename(columns={0: "cid"})
    data["device_id"] = device_id
    now = datetime.now()
    data["hour"] = now.hour
    data["minute"] = now.minute
    data.loc[data["hour"] == 0, ["hour"]] = 24
    data.loc[data["minute"] == 0, ["minute"]] = 60
    data["hour"] = data["hour"].astype("category")
    data["minute"] = data["minute"].astype("category")
    # 虽然预测y,但ffm转化需要y,并不影响预测结果
    data["y"] = 0
    # print("done 特征工程")

    return data


# 把ffm.pkl load进来,将上面的表转化为ffm格式
def transform_ffm_format(df,queue_name,device_id):
    # with open(DIRECTORY_PATH + "ffm.pkl", "rb") as f:
    with open("/Users/mac/utils/ffm.pkl", "rb") as f:
        ffm_format_pandas = pickle.load(f)
        data = ffm_format_pandas.native_transform(df)
        # predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name)
        predict_file_name = "/Users/mac/utils/result/{0}.csv".format(queue_name)
        data.to_csv(predict_file_name, index=False, header=None)
        print("done ffm")
        return predict_file_name


# 将模型加载,预测
def predict(queue_name,queue_arg,device_id,city_id):
    data = feature_en(queue_arg[0], device_id)
    data_file_path = transform_ffm_format(data,queue_name)

    ffm_model = xl.create_ffm()
    ffm_model.setTest(data_file_path)
    ffm_model.setSigmoid()

    ffm_model.predict("/Users/mac/utils/model.out",
                      "/Users/mac/utils/result/{0}_output.txt".format(queue_name))
    # ffm_model.predict(DIRECTORY_PATH + "model.out",
    #                   DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name))
    return save_result(queue_name,queue_arg,device_id)


def save_result(queue_name,queue_arg,device_id):
    # score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name), header=None)
    score_df = pd.read_csv("/Users/mac/utils/result/{0}_output.txt".format(queue_name), header=None)
    # print(score_df)
    mm_scaler = MinMaxScaler()
    mm_scaler.fit(score_df)
    score_df = pd.DataFrame(mm_scaler.transform(score_df))
    score_df = score_df.rename(columns={0: "score"})
    score_df["cid"] = queue_arg[0]
    # 去掉cid前面的"diary|"
    score_df["cid"] = score_df["cid"].apply(lambda x:x[6:])
    print("score_df:")
    print(score_df.head(1))
    print(score_df.shape)
    if queue_arg[1] != []:
        df_temp = pd.DataFrame(queue_arg[1]).rename(columns={0: "cid"})
        df_temp["score"] = 0
        df_temp = df_temp.sort_index(axis=1,ascending=False)
        df_temp["cid"] = df_temp["cid"].apply(lambda x: x[6:])
        print("temp_df:")
        print(df_temp.head(1))
        print(df_temp.shape)

        predict_score_df = score_df.append(df_temp)
        print("score_df:")
        print(predict_score_df.head(1))
        print(predict_score_df.shape)

        return merge_score(queue_name, queue_arg, predict_score_df)

    else:
        return merge_score(queue_name, queue_arg, score_df)


def merge_score(queue_name, queue_arg, predict_score_df):
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='zhengxing_test')
    cursor = db.cursor()

    # 去除diary_id 前面的"diary|"
    diary_list = tuple(list(map(lambda x:x[6:],queue_arg[2])))
    print(diary_list)
    sql = "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
    cursor.execute(sql)
    result = cursor.fetchall()
    score_df = pd.DataFrame(list(result)).rename(columns = {0:"score",1:"cid"})

    print("日记打分表")
    print(score_df.head(2))
    db.close()

    return update_dairy_queue(score_df,predict_score_df)


def update_dairy_queue(score_df,predict_score_df):
    diary_id = score_df["cid"].values.tolist()
    video_id = []
    x = 1
    while x < len(diary_id):
        video_id.append(diary_id[x])
        x += 5

    if len(video_id)>0:
        not_video = list(set(diary_id) - set(video_id))
        # 为了相加时,cid能够匹配,先把cid变成索引,相加后,再把cid恢复成列

        not_video_df = score_df.loc[score_df["cid"].isin(not_video)].set_index(["cid"])
        not_video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(not_video)].set_index(["cid"])
        not_video_df["score"] = not_video_df["score"] + not_video_predict_df["score"]
        not_video_df = not_video_df.sort_values(by="score", ascending=False)

        video_df = score_df.loc[score_df["cid"].isin(video_id)].set_index(["cid"])
        video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(video_id)].set_index(["cid"])
        video_df["score"] = video_df["score"] + video_predict_df["score"]
        video_df = video_df.sort_values(by="score", ascending=False)

        not_video_id = not_video_df.index.tolist()
        video_id = video_df.index.tolist()
        diary_id = not_video_id
        i = 1
        for j in video_id:
            diary_id.insert(i, j)
            # TODO 下面的3是测试用的,如果上线后,把3改成5
            i += 3

        print("分数合并成功")
        return diary_id
    # 如果没有视频日记
    else:
        score_df = score_df.set_index(["cid"])
        predict_score_df = predict_score_df.set_index(["cid"])
        score_df["score"]=score_df["score"]+predict_score_df["score"]
        score_df = score_df.sort_values(by="score", ascending=False)
        print("1分数合并成功")
        return score_df.index.tolist()


def update_sql_dairy_queue(queue_name, diary_id,device_id, city_id):
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='doris_test')
    cursor = db.cursor()
    id_str = str(diary_id[0])
    for i in range(1, len(diary_id)):
        id_str = id_str + "," + str(diary_id[i])
    print("写入前")
    print(id_str[:80])
    sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
        (queue_name,id_str,device_id, city_id)
    cursor.execute(sql)
    db.commit()
    db.close()
    print("成功写入diaryid")


# 更新前获取最新的native_queue
def get_native_queue(device_id,city_id):
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='doris_test')
    cursor = db.cursor()
    sql = "select native_queue from device_diary_queue where device_id = '{}' and city_id = '{}';".format(device_id,city_id)
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    if not df.empty:
        native_queue = df.loc[0,0].split(",")
        native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
        db.close()
        # print("成功获取native_queue")
        return native_queue
    else:
        return None


def multi_update(queue_name,queue_arg,device_id,city_id):
    if queue_arg[0] != []:
        diary_id = predict(queue_name,queue_arg,device_id,city_id)
        return diary_id
    else:
        print("预测集是空,不需要预测")
        return False


def get_queue(device_id, city_id,queue_name):
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='doris_test')

    cursor = db.cursor()
    sql = "select {} from device_diary_queue " \
          "where device_id = '{}' and city_id = '{}';".format(queue_name,device_id, city_id)
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    if not df.empty:
        queue_list = df.loc[0,0].split(",")
        queue_list = list(map(lambda x: "diary|" + str(x), queue_list))
        db.close()
        return queue_list
    else:
        print("该用户对应的日记队列为空")
        return False


def user_update(device_id,city_id):
    global native_queue_list
    queue_name_list = ["native_queue","nearby_queue","nation_queue","megacity_queue"]
    for queue_name in queue_name_list:
        queue_list = get_queue(device_id, city_id,queue_name)
        if queue_name == "native_queue":
            native_queue_list = queue_list
        if queue_list:
            queue_predict = list(set(queue_list) & set(data_set_cid))
            queue_not_predict = list(set(queue_list) - set(data_set_cid))
            queue_arg = [queue_predict,queue_not_predict,queue_list]
            diary_id = multi_update(queue_name, queue_arg, device_id, city_id)
            if diary_id and (native_queue_list == get_native_queue(device_id,city_id)):
                update_sql_dairy_queue(queue_name, diary_id, device_id, city_id)
                print("更新结束")
            else:
                print("不需要更新日记队列")
        else:
            print("日记队列为空")

if __name__ == "__main__":
    # while True:
    # TODO 部署到线上,改一下get_active_users,现在不返回cityid,改成city_id和deviceid 组成的df
    # empty,df = get_active_users()
    # if empty:
    #     for eachFile in os.listdir("/tmp"):
    #         if "xlearn" in eachFile:
    #             os.remove("/tmp" + "/" + eachFile)
    #     time.sleep(58)
    # else:
    #     old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
    #     device_id_list = df["device_id"].values.tolist()
    #     # 求活跃用户和老用户的交集,也就是只预测老用户
    #     predict_list = list(set(device_id_list) & set(old_device_id_list))
    #
    #     # 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
    #     # predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
    #     df = df.loc[df["device_id"].isin(predict_list)]
    #     device_list = df["device_id"].values.tolist()
    #     city_list = df["city_id"].values.tolist()
    #     device_city_list = list(zip(device_list,city_list))
    #     start = time.time()

# 测试改生产改一下模型、pickle、输出文件路径、读取文件路径

    warnings.filterwarnings("ignore")
    # data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
    data_set_cid = pd.read_csv("/Users/mac/utils/data_set_cid.csv")["cid"].values.tolist()
    device_city_list = [("356156075348110","tianjin")]
    if device_city_list != []:
        for i in device_city_list:
            user_update(i[0], i[1])

    else:
        print("该列表是新用户,不需要预测")
    end = time.time()


# # TODO 上线后把预测用户改成多进程预测