Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
P
physical
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
alpha
physical
Commits
4ae7e49f
Commit
4ae7e49f
authored
Jul 05, 2019
by
lixiaofang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
修改mapping
parent
c4378545
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
213 additions
and
159 deletions
+213
-159
topic.py
search/utils/topic.py
+21
-7
topic.py
search/views/topic.py
+147
-119
topic-high-star.json
trans2es/mapping/topic-high-star.json
+5
-2
topic-star-routing.json
trans2es/mapping/topic-star-routing.json
+13
-10
topic-star.json
trans2es/mapping/topic-star.json
+1
-1
topic.json
trans2es/mapping/topic.json
+9
-8
topic.py
trans2es/models/topic.py
+16
-12
topic_transfer.py
trans2es/utils/topic_transfer.py
+1
-0
No files found.
search/utils/topic.py
View file @
4ae7e49f
...
...
@@ -251,9 +251,9 @@ class TopicUtils(object):
]
if
query
is
not
None
:
# 搜索帖子
multi_fields
=
{
#'description': 200,
#
'description': 200,
'content'
:
300
,
#'name': 400,
#
'name': 400,
'tag_name_list'
:
300
,
}
query_fields
=
[
'^'
.
join
((
k
,
str
(
v
)))
for
(
k
,
v
)
in
multi_fields
.
items
()]
...
...
@@ -329,18 +329,18 @@ class TopicUtils(object):
'query'
:
query
,
'type'
:
'best_fields'
,
'operator'
:
'and'
,
'fields'
:
[
"content"
,
"tag_name_list"
],
'fields'
:
[
"content"
,
"tag_name_list"
],
}
functions_list
+=
[
{
"weight"
:
300
,
"filter"
:{
"bool"
:{
"must"
:{
"filter"
:
{
"bool"
:
{
"must"
:
{
"term"
:
{
"content_level"
:
6
},
},
"minimum_should_match"
:
1
,
"should"
:[
"should"
:
[
{
'multi_match'
:
multi_match
},
{
"term"
:
{
"tag_list"
:
tag_id
}},
{
"term"
:
{
"user_nick_name_pre"
:
query
.
lower
()}}
...
...
@@ -1067,6 +1067,20 @@ class TopicUtils(object):
}
},
})
elif
sort_by
==
TOPIC_SEARCH_SORT
.
TOPIC_ADD_TIME
:
sort_rule
.
append
({
"related_billboard.topic_add_createtime"
:
{
"order"
:
"desc"
,
"nested_path"
:
"related_billboard"
,
"nested_filter"
:
{
"term"
:
{
"related_billboard.pictorial_id"
:
pictorial_id
}
}
},
})
logging
.
info
(
"get picotirial:
%
s"
%
sort_rule
)
return
sort_rule
...
...
search/views/topic.py
View file @
4ae7e49f
...
...
@@ -14,6 +14,7 @@ from search.utils.common import *
from
libs.es
import
ESPerform
from
django.conf
import
settings
def
get_discover_page_topic_ids
(
user_id
,
device_id
,
size
,
query_type
=
TopicPageType
.
FIND_PAGE
):
try
:
if
user_id
==
-
1
:
...
...
@@ -28,10 +29,11 @@ def get_discover_page_topic_ids(user_id, device_id, size, query_type=TopicPageTy
if
have_read_topic_id_list
==
None
:
have_read_topic_id_list
=
list
()
recommend_topic_ids
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
recommend_topic_ids
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
have_read_topic_id_list
.
extend
(
recommend_topic_ids
)
redis_dict
=
{
...
...
@@ -46,27 +48,31 @@ def get_discover_page_topic_ids(user_id, device_id, size, query_type=TopicPageTy
def
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
,
size
,
query
=
None
,
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
disable_collpase
=
False
,
usefulrecall
=
-
1
,
useful_tag_list
=
[]):
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
disable_collpase
=
False
,
usefulrecall
=-
1
,
useful_tag_list
=
[]):
try
:
topic_star_routing
=
"6"
index_type
=
"topic-high-star"
device_redis_key
=
""
if
query
is
None
:
if
user_id
>
0
:
if
user_id
>
0
:
redis_key
=
"physical:home_recommend"
+
":user_id:"
+
str
(
user_id
)
+
":query_type:"
+
str
(
query_type
)
device_redis_key
=
"physical:home_recommend"
+
":device_id:"
+
device_id
+
":query_type:"
+
str
(
query_type
)
device_redis_key
=
"physical:home_recommend"
+
":device_id:"
+
device_id
+
":query_type:"
+
str
(
query_type
)
else
:
redis_key
=
"physical:home_recommend"
+
":device_id:"
+
device_id
+
":query_type:"
+
str
(
query_type
)
else
:
topic_star_routing
=
"3,4,5,6"
index_type
=
"topic"
if
user_id
>
0
:
redis_key
=
"physical:home_query"
+
":user_id:"
+
str
(
user_id
)
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
device_redis_key
=
"physical:home_query"
+
":device_id:"
+
device_id
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
if
user_id
>
0
:
redis_key
=
"physical:home_query"
+
":user_id:"
+
str
(
user_id
)
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
device_redis_key
=
"physical:home_query"
+
":device_id:"
+
device_id
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
else
:
redis_key
=
"physical:home_query"
+
":device_id:"
+
device_id
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
redis_key
=
"physical:home_query"
+
":device_id:"
+
device_id
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
redis_field_list
=
[
b
'have_read_topic_list'
]
redis_field_val_list
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
...
...
@@ -78,18 +84,17 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
if
query
is
None
:
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
else
:
if
offset
>
0
:
# 首次搜索时不需要过滤已读
if
offset
>
0
:
# 首次搜索时不需要过滤已读
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
elif
len
(
device_redis_key
)
>
0
:
elif
len
(
device_redis_key
)
>
0
:
redis_field_val_list
=
redis_client
.
hmget
(
device_redis_key
,
redis_field_list
)
if
redis_field_val_list
[
0
]:
if
query
is
None
:
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
else
:
if
offset
>
0
:
# 首次搜索时不需要过滤已读
if
offset
>
0
:
# 首次搜索时不需要过滤已读
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
if
have_read_topic_id_list
==
None
:
have_read_topic_id_list
=
list
()
have_read_topic_id_list
.
extend
(
promote_topic_list
)
...
...
@@ -98,66 +103,72 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
attention_tag_list
=
list
()
recommend_topic_list
=
list
()
if
query
is
None
:
if
user_id
!=
-
1
:
# 有用标签召回
if
usefulrecall
!=
-
1
:
useful_topic_id_list
=
TopicUtils
.
userful_tag_topic_list
(
user_id
,
have_read_topic_id_list
,
4
,
"topic-high-star"
,
"6"
,
useful_tag_list
=
useful_tag_list
)
# user_similar_score_redis_key = "physical:user_similar_score:user_id:" + str(user_id)
# redis_user_similar_score_redis_val = redis_client.get(user_similar_score_redis_key)
# user_similar_score_redis_list = json.loads(
# redis_user_similar_score_redis_val) if redis_user_similar_score_redis_val else []
size
=
size
-
len
(
useful_topic_id_list
)
have_read_topic_id_list
.
extend
(
useful_topic_id_list
)
# linucb 推荐帖子
topic_recommend_redis_key
=
"physical:linucb:topic_recommend:device_id:"
+
str
(
device_id
)
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
linucb_recommend_topic_id_list
=
list
()
recommend_topic_list
=
list
()
if
b
"data"
in
recommend_topic_dict
:
linucb_recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
if
linucb_recommend_topic_id_list
==
None
:
linucb_recommend_topic_id_list
=
list
()
# 推荐帖子是强插的,要保证推荐帖子不在已读里
logging
.
warning
(
"type1:
%
s,type2:
%
s"
%
(
type
(
linucb_recommend_topic_id_list
),
type
(
have_read_topic_id_list
)))
recommend_topic_id_list
=
list
(
set
(
linucb_recommend_topic_id_list
)
-
set
(
have_read_topic_id_list
))
recommend_topic_id_list
.
sort
(
key
=
linucb_recommend_topic_id_list
.
index
)
# cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
# newcursor = cursor + 6
if
len
(
recommend_topic_id_list
)
>
0
:
recommend_topic_list
=
recommend_topic_id_list
[
0
:
size
]
if
user_id
!=
-
1
:
# 有用标签召回
if
usefulrecall
!=
-
1
:
useful_topic_id_list
=
TopicUtils
.
userful_tag_topic_list
(
user_id
,
have_read_topic_id_list
,
4
,
"topic-high-star"
,
"6"
,
useful_tag_list
=
useful_tag_list
)
# user_similar_score_redis_key = "physical:user_similar_score:user_id:" + str(user_id)
# redis_user_similar_score_redis_val = redis_client.get(user_similar_score_redis_key)
# user_similar_score_redis_list = json.loads(
# redis_user_similar_score_redis_val) if redis_user_similar_score_redis_val else []
size
=
size
-
len
(
useful_topic_id_list
)
have_read_topic_id_list
.
extend
(
useful_topic_id_list
)
# linucb 推荐帖子
topic_recommend_redis_key
=
"physical:linucb:topic_recommend:device_id:"
+
str
(
device_id
)
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
linucb_recommend_topic_id_list
=
list
()
recommend_topic_list
=
list
()
if
b
"data"
in
recommend_topic_dict
:
linucb_recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
if
linucb_recommend_topic_id_list
==
None
:
linucb_recommend_topic_id_list
=
list
()
# 推荐帖子是强插的,要保证推荐帖子不在已读里
logging
.
warning
(
"type1:
%
s,type2:
%
s"
%
(
type
(
linucb_recommend_topic_id_list
),
type
(
have_read_topic_id_list
)))
recommend_topic_id_list
=
list
(
set
(
linucb_recommend_topic_id_list
)
-
set
(
have_read_topic_id_list
))
recommend_topic_id_list
.
sort
(
key
=
linucb_recommend_topic_id_list
.
index
)
# cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
# newcursor = cursor + 6
if
len
(
recommend_topic_id_list
)
>
0
:
recommend_topic_list
=
recommend_topic_id_list
[
0
:
size
]
# redis_client.hset(topic_recommend_redis_key, "cursor", newcursor)
if
b
"datadict"
in
recommend_topic_dict
:
linucb_recommend_topic_id_dict
=
json
.
loads
(
recommend_topic_dict
[
b
"datadict"
])
if
linucb_recommend_topic_id_dict
is
not
None
and
len
(
recommend_topic_list
)
>
0
:
for
i
in
recommend_topic_list
:
recommend_topic_user_list
.
append
(
linucb_recommend_topic_id_dict
[
str
(
i
)])
# if have_read_topic_id_list == None:
# have_read_topic_id_list = list()
# 用户关注标签
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
if
len
(
recommend_topic_list
)
>
0
:
size
=
size
-
len
(
recommend_topic_list
)
have_read_topic_id_list
.
extend
(
recommend_topic_list
)
# have_read_topic_id_list_add_promote = list()
# have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
# promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
# is_online=1).values_list("topic_id",flat=True)
#
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
if
b
"datadict"
in
recommend_topic_dict
:
linucb_recommend_topic_id_dict
=
json
.
loads
(
recommend_topic_dict
[
b
"datadict"
])
if
linucb_recommend_topic_id_dict
is
not
None
and
len
(
recommend_topic_list
)
>
0
:
for
i
in
recommend_topic_list
:
recommend_topic_user_list
.
append
(
linucb_recommend_topic_id_dict
[
str
(
i
)])
# if have_read_topic_id_list == None:
# have_read_topic_id_list = list()
# 用户关注标签
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
if
len
(
recommend_topic_list
)
>
0
:
size
=
size
-
len
(
recommend_topic_list
)
have_read_topic_id_list
.
extend
(
recommend_topic_list
)
# have_read_topic_id_list_add_promote = list()
# have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
# promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
# is_online=1).values_list("topic_id",flat=True)
#
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
rank_topic_id_list
=
list
()
if
size
>
0
:
if
size
>
0
:
rank_topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
tag_id
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
index_type
,
routing
=
topic_star_routing
,
attention_tag_list
=
attention_tag_list
,
linucb_user_id_list
=
recommend_topic_user_list
,
disable_collpase
=
disable_collpase
)
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
index_type
,
routing
=
topic_star_routing
,
attention_tag_list
=
attention_tag_list
,
linucb_user_id_list
=
recommend_topic_user_list
,
disable_collpase
=
disable_collpase
)
# if len(recommend_topic_list) == 6 and query is None:
# if (size < 11):
...
...
@@ -174,7 +185,7 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
# topic_id_list.extend(rank_topic_id_list)
have_read_topic_id_list
.
extend
(
rank_topic_id_list
)
if
len
(
have_read_topic_id_list
)
>
30000
:
cut_len
=
len
(
have_read_topic_id_list
)
-
30000
cut_len
=
len
(
have_read_topic_id_list
)
-
30000
have_read_topic_id_list
=
have_read_topic_id_list
[
cut_len
:]
redis_dict
=
{
"have_read_topic_list"
:
json
.
dumps
(
have_read_topic_id_list
),
...
...
@@ -183,13 +194,13 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
# 每个session key保存60天
redis_client
.
expire
(
redis_key
,
60
*
60
*
24
*
60
)
if
usefulrecall
!=
-
1
:
return
recommend_topic_list
,
rank_topic_id_list
,
useful_topic_id_list
return
recommend_topic_list
,
rank_topic_id_list
,
useful_topic_id_list
else
:
return
recommend_topic_list
,
rank_topic_id_list
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
if
usefulrecall
!=
-
1
:
return
[],
[],
[]
return
[],
[],
[]
else
:
return
[],
[]
...
...
@@ -204,7 +215,8 @@ def query_tag_id_by_topic(offset=0, size=10, topic_id_list=[], user_id=-1):
@bind
(
"physical/search/home_recommend"
)
def
home_recommend
(
device_id
=
""
,
user_id
=-
1
,
offset
=
0
,
size
=
10
,
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
usefulrecall
=
-
1
,
useful_tag_list
=
[]):
def
home_recommend
(
device_id
=
""
,
user_id
=-
1
,
offset
=
0
,
size
=
10
,
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
usefulrecall
=-
1
,
useful_tag_list
=
[]):
"""
:remark:首页推荐,目前只推荐日记
:param session_id:
...
...
@@ -237,26 +249,34 @@ def home_recommend(device_id="", user_id=-1, offset=0, size=10, query_type=Topic
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
if
len
(
have_read_topic_id_list
)
>
offset
:
recommend_topic_ids
=
have_read_topic_id_list
[
offset
:
offset
+
size
]
recommend_topic_ids
=
have_read_topic_id_list
[
offset
:
offset
+
size
]
else
:
recommend_topic_ids
=
have_read_topic_id_list
[
0
:
size
]
else
:
if
usefulrecall
!=
-
1
and
len
(
useful_tag_list
)
>
0
:
recommend_topic_ids
,
rank_topic_ids
,
useful_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
,
usefulrecall
=
usefulrecall
,
useful_tag_list
=
useful_tag_list
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
,
"useful_topic_ids"
:
useful_topic_ids
}
else
:
recommend_topic_ids
,
rank_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
}
if
usefulrecall
!=
-
1
and
len
(
useful_tag_list
)
>
0
:
recommend_topic_ids
,
rank_topic_ids
,
useful_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
,
usefulrecall
=
usefulrecall
,
useful_tag_list
=
useful_tag_list
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
,
"useful_topic_ids"
:
useful_topic_ids
}
else
:
recommend_topic_ids
,
rank_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
}
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
if
usefulrecall
!=
-
1
:
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:[],
"useful_topic_ids"
:
[]}
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:
[],
"useful_topic_ids"
:
[]}
else
:
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:
[]}
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:
[]}
@bind
(
"physical/search/discover_page"
)
...
...
@@ -300,11 +320,12 @@ def home_query(device_id="", tag_id=-1, user_id=-1, query="", offset=0, size=10)
if
not
isinstance
(
device_id
,
str
):
device_id
=
""
recommend_topic_list
,
rank_topic_id_list
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
=
offset
,
size
=
size
,
query
=
query
)
if
len
(
rank_topic_id_list
)
>
0
and
len
(
rank_topic_id_list
)
<
size
:
recommend_topic_list
,
rank_topic_id_list
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
=
offset
,
size
=
size
,
query
=
query
)
if
len
(
rank_topic_id_list
)
>
0
and
len
(
rank_topic_id_list
)
<
size
:
recommend_topic_list
,
rank_topic_id_list
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
=
offset
,
size
=
size
,
query
=
query
,
disable_collpase
=
True
)
query
=
query
,
disable_collpase
=
True
)
return
{
"recommend_topic_ids"
:
rank_topic_id_list
}
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
...
...
@@ -326,9 +347,9 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
if
not
isinstance
(
user_id
,
int
):
user_id
=
-
1
if
user_id
>
0
:
redis_key
=
"physical:topic_detail_recommend"
+
":user_id:"
+
str
(
user_id
)
+
"topic_id:"
+
str
(
topic_id
)
redis_key
=
"physical:topic_detail_recommend"
+
":user_id:"
+
str
(
user_id
)
+
"topic_id:"
+
str
(
topic_id
)
else
:
redis_key
=
"physical:topic_detail_recommend"
+
":device_id:"
+
device_id
+
"topic_id:"
+
str
(
topic_id
)
redis_key
=
"physical:topic_detail_recommend"
+
":device_id:"
+
device_id
+
"topic_id:"
+
str
(
topic_id
)
if
int
(
offset
)
==
0
:
have_read_topic_list
=
list
()
# redis_dict = {
...
...
@@ -341,7 +362,7 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
have_read_topic_list
=
list
()
redis_field_list
=
[
b
'have_read_topic_list'
]
have_read_topic_redis_data
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
have_read_topic_redis_data
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
have_read_topic_list
=
json
.
loads
(
have_read_topic_redis_data
[
0
])
if
have_read_topic_redis_data
[
0
]
else
[]
es_cli_obj
=
ESPerform
.
get_cli
()
have_read_topic_list
.
append
(
topic_id
)
...
...
@@ -349,28 +370,33 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
topic_tag_result
=
list
()
result
=
list
()
if
len
(
topic_tag_list
)
!=
0
:
topic_tag_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_tag_list
=
topic_tag_list
)
topic_tag_size
=
len
(
topic_tag_result
)
have_read_topic_list
.
extend
(
topic_tag_result
)
else
:
topic_tag_size
=
0
if
topic_tag_size
<
size
:
size
=
size
-
topic_tag_size
if
topic_user_id
!=
-
1
:
topic_user_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
topic_tag_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_user_id
=
topic_user_id
)
topic_user_size
=
len
(
topic_user_result
)
have_read_topic_list
.
extend
(
topic_user_result
)
if
topic_user_size
<
size
:
size
=
size
-
topic_user_size
result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
have_read_topic_list
.
extend
(
result
)
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_tag_list
=
topic_tag_list
)
topic_tag_size
=
len
(
topic_tag_result
)
have_read_topic_list
.
extend
(
topic_tag_result
)
else
:
topic_tag_size
=
0
if
topic_tag_size
<
size
:
size
=
size
-
topic_tag_size
if
topic_user_id
!=
-
1
:
topic_user_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_user_id
=
topic_user_id
)
topic_user_size
=
len
(
topic_user_result
)
have_read_topic_list
.
extend
(
topic_user_result
)
if
topic_user_size
<
size
:
size
=
size
-
topic_user_size
result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
have_read_topic_list
.
extend
(
result
)
# have_read_topic_redis_data = redis_client.get(redis_key)
# have_read_topic_list = json.loads(have_read_topic_redis_data) if have_read_topic_redis_data else []
...
...
@@ -446,8 +472,8 @@ def topic_search(filters, nfilters=None, sorts_by=None, offset=0, size=10):
"""帖子搜索。"""
try
:
(
topic_id_list
,
total_count
)
=
TopicUtils
.
list_topic_ids
(
filters
=
filters
,
nfilters
=
nfilters
,
sorts_by
=
sorts_by
,
offset
=
offset
,
size
=
size
)
(
topic_id_list
,
total_count
)
=
TopicUtils
.
list_topic_ids
(
filters
=
filters
,
nfilters
=
nfilters
,
sorts_by
=
sorts_by
,
offset
=
offset
,
size
=
size
)
return
{
"topic_ids"
:
topic_id_list
,
...
...
@@ -470,8 +496,10 @@ def query_topic_by_user_similarity(topic_similarity_score_dict, offset=0, size=1
try
:
must_topic_id_list
=
list
(
topic_similarity_score_dict
.
keys
())
topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
tag_id
=
0
,
user_id
=-
1
,
offset
=
offset
,
size
=
size
,
single_size
=
size
,
must_topic_id_list
=
must_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
tag_id
=
0
,
user_id
=-
1
,
offset
=
offset
,
size
=
size
,
single_size
=
size
,
must_topic_id_list
=
must_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
return
{
"recommend_topic_ids"
:
topic_id_list
}
except
:
...
...
trans2es/mapping/topic-high-star.json
View file @
4ae7e49f
{
"dynamic"
:
"strict"
,
{
"dynamic"
:
"strict"
,
"_routing"
:
{
"required"
:
true
},
"properties"
:
{
"id"
:{
"type"
:
"long"
},
...
...
@@ -60,6 +59,7 @@
"type"
:
"nested"
,
"properties"
:{
"pictorial_id"
:{
"type"
:
"long"
},
"topic_add_createtime"
:{
"type"
:
"long"
},
"real_vote_cnt"
:{
"type"
:
"long"
},
"virt_vote_cnt"
:{
"type"
:
"long"
},
"total_vote_cnt"
:{
"type"
:
"long"
}
...
...
@@ -67,3 +67,6 @@
}
}
}
trans2es/mapping/topic-star-routing.json
View file @
4ae7e49f
...
...
@@ -8,18 +8,18 @@
"vote_num"
:{
"type"
:
"long"
},
"total_vote_num"
:{
"type"
:
"long"
},
"reply_num"
:{
"type"
:
"long"
},
"name"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"description"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"content"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"name"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"description"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"content"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"content_level"
:{
"type"
:
"text"
},
"user_id"
:{
"type"
:
"long"
},
"user_nick_name"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
//帖子用户名
"user_nick_name"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
//帖子用户名
"user_nick_name_pre"
:
{
"type"
:
"text"
,
"analyzer"
:
"keyword"
},
//不切词的用户名
"group_id"
:{
"type"
:
"long"
},
//所在组ID
"tag_list"
:{
"type"
:
"long"
},
//标签属性
"useful_tag_list"
:{
"type"
:
"long"
},
//有用标签属性
"edit_tag_list"
:{
"type"
:
"long"
},
//编辑标签
"tag_name_list"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"tag_name_list"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"share_num"
:{
"type"
:
"long"
},
"pick_id_list"
:{
"type"
:
"long"
},
"offline_score"
:{
"type"
:
"double"
},
//离线算分
...
...
@@ -44,14 +44,14 @@
"platform"
:
{
"type"
:
"long"
},
"platform_id"
:
{
"type"
:
"long"
},
"drop_score"
:{
"type"
:
"
double
"
},
//
人工降分
"drop_score"
:{
"type"
:
"
long
"
},
//
人工降分
"sort_score"
:{
"type"
:
"double"
},
//
排序分
"pictorial_id"
:{
"type"
:
"long"
},
//所在组ID
"pictorial_name"
:{
//
所在组名称
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index
"
,
"search_analyzer"
:
"
gm_default_index
"
"analyzer"
:
"
keyword
"
,
"search_analyzer"
:
"
keyword
"
},
"is_excellent"
:{
"type"
:
"long"
},
"is_operation_home_recommend"
:
{
"type"
:
"boolean"
},
//是否首页运营推荐
...
...
@@ -60,10 +60,14 @@
"type"
:
"nested"
,
"properties"
:{
"pictorial_id"
:{
"type"
:
"long"
},
"topic_add_createtime"
:{
"type"
:
"long"
},
"real_vote_cnt"
:{
"type"
:
"long"
},
"virt_vote_cnt"
:{
"type"
:
"long"
},
"total_vote_cnt"
:{
"type"
:
"long"
}
}
}
}
}
\ No newline at end of file
}
trans2es/mapping/topic-star.json
View file @
4ae7e49f
...
...
@@ -44,7 +44,7 @@
"platform"
:
{
"type"
:
"long"
},
"platform_id"
:
{
"type"
:
"long"
},
"drop_score"
:{
"type"
:
"
double
"
},
//
人工降分
"drop_score"
:{
"type"
:
"
long
"
},
//
人工降分
"sort_score"
:{
"type"
:
"double"
},
//
排序分
"pictorial_id"
:{
"type"
:
"long"
},
//所在组ID
...
...
trans2es/mapping/topic.json
View file @
4ae7e49f
...
...
@@ -8,18 +8,18 @@
"vote_num"
:{
"type"
:
"long"
},
"total_vote_num"
:{
"type"
:
"long"
},
"reply_num"
:{
"type"
:
"long"
},
"name"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"description"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"content"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"name"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"description"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"content"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"content_level"
:{
"type"
:
"text"
},
"user_id"
:{
"type"
:
"long"
},
"user_nick_name"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
//帖子用户名
"user_nick_name"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
//帖子用户名
"user_nick_name_pre"
:
{
"type"
:
"text"
,
"analyzer"
:
"keyword"
},
//不切词的用户名
"group_id"
:{
"type"
:
"long"
},
//所在组ID
"tag_list"
:{
"type"
:
"long"
},
//标签属性
"useful_tag_list"
:{
"type"
:
"long"
},
//有用标签属性
"edit_tag_list"
:{
"type"
:
"long"
},
//编辑标签
"tag_name_list"
:{
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index"
,
"search_analyzer"
:
"gm_default_index
"
},
"tag_name_list"
:{
"type"
:
"text"
,
"analyzer"
:
"
keyword"
,
"search_analyzer"
:
"keyword
"
},
"share_num"
:{
"type"
:
"long"
},
"pick_id_list"
:{
"type"
:
"long"
},
"offline_score"
:{
"type"
:
"double"
},
//离线算分
...
...
@@ -44,14 +44,14 @@
"platform"
:
{
"type"
:
"long"
},
"platform_id"
:
{
"type"
:
"long"
},
"drop_score"
:{
"type"
:
"
double
"
},
//
人工降分
"drop_score"
:{
"type"
:
"
long
"
},
//
人工降分
"sort_score"
:{
"type"
:
"double"
},
//
排序分
"pictorial_id"
:{
"type"
:
"long"
},
//所在组ID
"pictorial_name"
:{
//
所在组名称
"type"
:
"text"
,
"analyzer"
:
"
gm_default_index
"
,
"search_analyzer"
:
"
gm_default_index
"
"analyzer"
:
"
keyword
"
,
"search_analyzer"
:
"
keyword
"
},
"is_excellent"
:{
"type"
:
"long"
},
"is_operation_home_recommend"
:
{
"type"
:
"boolean"
},
//是否首页运营推荐
...
...
@@ -60,6 +60,7 @@
"type"
:
"nested"
,
"properties"
:{
"pictorial_id"
:{
"type"
:
"long"
},
"topic_add_createtime"
:{
"type"
:
"long"
},
"real_vote_cnt"
:{
"type"
:
"long"
},
"virt_vote_cnt"
:{
"type"
:
"long"
},
"total_vote_cnt"
:{
"type"
:
"long"
}
...
...
trans2es/models/topic.py
View file @
4ae7e49f
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from
__future__
import
unicode_literals
,
absolute_import
,
print_function
from
django.conf
import
settings
from
django.core.management.base
import
BaseCommand
,
CommandError
import
traceback
import
logging
import
datetime
import
time
from
libs.es
import
ESPerform
from
django.db
import
models
import
datetime
from
alpha_types.venus
import
GRAP_PLATFORM
from
.pick_topic
import
PickTopic
from
.tag
import
TopicTag
,
Tag
from
.user_extra
import
UserExtra
...
...
@@ -203,7 +202,7 @@ class Topic(models.Model):
tag_id_list
=
TopicTag
.
objects
.
using
(
settings
.
SLAVE_DB_NAME
)
.
filter
(
topic_id
=
self
.
id
,
is_collection
=
1
)
.
values_list
(
"tag_id"
,
flat
=
True
)
return
list
(
tag_id_list
)
return
list
(
tag_id_list
)
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
return
[]
...
...
@@ -283,25 +282,29 @@ class Topic(models.Model):
def
get_related_billboard
(
self
):
try
:
pictorial_ids
=
Topic
.
get_pictorial_id
(
self
)
#
pictorial_ids = Topic.get_pictorial_id(self)
pictorial_id_list
=
[]
related_billboard_list
=
list
()
for
pictorial_id
in
pictorial_ids
:
pictorials
=
PictorialTopic
.
objects
.
filter
(
topic_id
=
self
.
id
)
.
values
(
"pictorial_id"
,
"create_time"
)
for
pictorial_id
in
pictorials
:
query_result
=
TopicBillBoard
.
objects
.
filter
(
pictorial_id
=
pictorial_id
,
query_result
=
TopicBillBoard
.
objects
.
filter
(
pictorial_id
=
pictorial_id
.
get
(
'pictorial_id'
,
None
)
,
topic_id
=
self
.
id
)
.
values
()
.
first
()
if
query_result
==
None
:
related_billboard_list
.
append
({
"pictorial_id"
:
pictorial_id
,
"real_vote_cnt"
:
0
,
"virt_vote_cnt"
:
0
,
"total_vote_cnt"
:
0
})
related_billboard_list
.
append
({
"pictorial_id"
:
pictorial_id
.
get
(
'pictorial_id'
,
None
),
"real_vote_cnt"
:
0
,
"virt_vote_cnt"
:
0
,
"total_vote_cnt"
:
0
,
"topic_add_createtime"
:
int
(
time
.
mktime
(
pictorial_id
.
get
(
"create_time"
,
None
)
.
timetuple
()))})
else
:
total_vote_cnt
=
int
(
query_result
[
"virt_vote_cnt"
])
+
int
(
query_result
[
"real_vote_cnt"
])
related_billboard_list
.
append
(
{
"pictorial_id"
:
query_result
[
"pictorial_id"
],
"real_vote_cnt"
:
query_result
[
"real_vote_cnt"
],
"virt_vote_cnt"
:
query_result
[
"virt_vote_cnt"
],
"total_vote_cnt"
:
total_vote_cnt
})
"virt_vote_cnt"
:
query_result
[
"virt_vote_cnt"
],
"total_vote_cnt"
:
total_vote_cnt
,
"topic_add_createtime"
:
int
(
time
.
mktime
(
pictorial_id
.
get
(
"create_time"
,
None
)
.
timetuple
()))})
logging
.
info
(
"product_brand_info"
%
related_billboard_list
)
...
...
@@ -342,6 +345,7 @@ class PictorialTopic(models.Model):
topic_id
=
models
.
BigIntegerField
(
verbose_name
=
u'帖子ID'
)
is_online
=
models
.
BooleanField
(
verbose_name
=
u"是否有效"
,
default
=
True
)
is_deleted
=
models
.
BooleanField
(
verbose_name
=
u'是否删除'
)
create_time
=
models
.
DateTimeField
(
verbose_name
=
u'创建时间'
,
default
=
datetime
.
datetime
.
fromtimestamp
(
0
))
class
TopicExtra
(
models
.
Model
):
...
...
trans2es/utils/topic_transfer.py
View file @
4ae7e49f
...
...
@@ -8,6 +8,7 @@ from libs.tools import tzlc
import
time
import
re
import
datetime
from
trans2es.models.user
import
User
from
trans2es.models.topic
import
ExcellentTopic
,
TopicHomeRecommend
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment