Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
P
physical
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
alpha
physical
Commits
f90e0b9e
Commit
f90e0b9e
authored
May 29, 2019
by
lixiaofang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add
parent
e10b33c3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
168 additions
and
129 deletions
+168
-129
app_conf.xml
app_conf.xml
+1
-0
search_hotword.py
search/views/search_hotword.py
+15
-14
topic.py
search/views/topic.py
+152
-115
No files found.
app_conf.xml
View file @
f90e0b9e
...
...
@@ -17,5 +17,6 @@
<element
value=
"search.views.contrast_similar"
/>
<element
value=
"injection.data_sync.tasks"
/>
<element
value=
"search.views.contrast_similar"
/>
<element
value=
"search.views.search_hotword"
/>
</config>
</gm_rpcd_config>
search/views/search_hotword.py
View file @
f90e0b9e
...
...
@@ -33,36 +33,37 @@ def search_hotword(device_id=-1):
try
:
all_tag_name_list
=
set
()
# 获取搜索推荐热词
results_registr_tag
=
RegisterShowTag
.
objects
.
filter
(
is_deleted
=
False
,
is_online
=
1
)
.
count
()
results_tag
=
Tag
.
objects
.
filter
(
is_online
=
True
,
collection
=
1
)
.
count
()
for
i
in
range
(
0
,
6
):
tag_id
=
random
.
randint
(
0
,
results_registr_tag
)
results_tag_chose
=
Tag
.
objects
.
filter
(
id
=
tag_id
)
.
values_list
(
"name"
,
flat
=
True
)
all_tag_name_list
.
add
(
results_tag_chose
)
tag_id
=
random
.
sample
(
range
(
1
,
results_registr_tag
),
1
)
results_tag_chose
=
Tag
.
objects
.
filter
(
id__in
=
tag_id
)
.
values_list
(
"name"
,
flat
=
True
)
for
i
in
results_tag_chose
:
all_tag_name_list
.
add
(
i
)
logging
.
info
(
"get all_tag_name_list01:
%
s"
%
all_tag_name_list
)
# 获取个性化标签
linucb_recommend_redis_prefix
=
"physical:linucb:tag_recommend:device_id:"
tag_recommend_redis_key
=
linucb_recommend_redis_prefix
+
str
(
device_id
)
linucb_recommend_tag_data
=
redis_client
.
get
(
tag_recommend_redis_key
)
linucb_recommend_tag_list
=
json
.
loads
(
linucb_recommend_tag_data
)
if
linucb_recommend_tag_data
else
[]
for
item
in
linucb_recommend_tag_list
:
all_tag_name_list
.
add
(
item
)
results_tag_recommend
=
Tag
.
objects
.
filter
(
id
=
item
,
is_online
=
True
)
.
values_list
(
"name"
,
flat
=
True
)
all_tag_name_list
.
add
(
results_tag_recommend
[
0
])
if
len
(
all_tag_name_list
)
==
12
:
return
{
"recommend_tag_name"
:
list
(
all_tag_name_list
)}
logging
.
info
(
"get all_tag_name_list02:
%
s"
%
all_tag_name_list
)
logging
.
info
(
"get all_tag_name_list02:
%
s"
%
all_tag_name_list
)
# 取不够数则取核心标签
if
len
(
all_tag_name_list
)
<
12
:
for
i
in
range
(
0
,
12
):
tag_id
=
random
.
randint
(
0
,
results_tag
)
results_tag_hexin
=
Tag
.
objects
.
filter
(
id
=
tag_id
)
.
values_list
(
"name"
,
flat
=
True
)
tag_id
=
random
.
sample
(
range
(
1
,
results_tag
),
12
-
len
(
all_tag_name_list
)
)
results_tag_hexin
=
Tag
.
objects
.
filter
(
id
__in
=
tag_id
)
.
values_list
(
"name"
,
flat
=
True
)
if
results_tag_hexin
not
in
all_tag_name_list
:
all_tag_name_list
.
add
(
results_tag_hexin
)
all_tag_name_list
.
add
(
results_tag_hexin
[
0
]
)
if
len
(
all_tag_name_list
)
>=
12
:
logging
.
info
(
"get all_tag_name_list03:
%
s"
%
all_tag_name_list
)
return
{
"recommend_name"
:
all_tag_name_list
}
return
{
"recommend_tag_name"
:
list
(
all_tag_name_list
)}
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
return
{
"recommend_name"
:
[]}
return
{
"recommend_
tag_
name"
:
[]}
search/views/topic.py
View file @
f90e0b9e
...
...
@@ -15,7 +15,6 @@ from libs.es import ESPerform
from
django.conf
import
settings
def
get_discover_page_topic_ids
(
user_id
,
device_id
,
size
,
query_type
=
TopicPageType
.
FIND_PAGE
):
try
:
if
user_id
==
-
1
:
...
...
@@ -30,10 +29,11 @@ def get_discover_page_topic_ids(user_id, device_id, size, query_type=TopicPageTy
if
have_read_topic_id_list
==
None
:
have_read_topic_id_list
=
list
()
recommend_topic_ids
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
recommend_topic_ids
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
have_read_topic_id_list
.
extend
(
recommend_topic_ids
)
redis_dict
=
{
...
...
@@ -48,23 +48,25 @@ def get_discover_page_topic_ids(user_id, device_id, size, query_type=TopicPageTy
def
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
,
size
,
query
=
None
,
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
disable_collpase
=
False
,
usefulrecall
=
-
1
):
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
disable_collpase
=
False
,
usefulrecall
=-
1
):
try
:
topic_star_routing
=
"6"
index_type
=
"topic-high-star"
if
query
is
None
:
if
user_id
>
0
:
if
user_id
>
0
:
redis_key
=
"physical:home_recommend"
+
":user_id:"
+
str
(
user_id
)
+
":query_type:"
+
str
(
query_type
)
else
:
redis_key
=
"physical:home_recommend"
+
":device_id:"
+
device_id
+
":query_type:"
+
str
(
query_type
)
else
:
topic_star_routing
=
"3,4,5,6"
index_type
=
"topic"
if
user_id
>
0
:
redis_key
=
"physical:home_query"
+
":user_id:"
+
str
(
user_id
)
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
if
user_id
>
0
:
redis_key
=
"physical:home_query"
+
":user_id:"
+
str
(
user_id
)
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
else
:
redis_key
=
"physical:home_query"
+
":device_id:"
+
device_id
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
redis_key
=
"physical:home_query"
+
":device_id:"
+
device_id
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
redis_field_list
=
[
b
'have_read_topic_list'
]
redis_field_val_list
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
...
...
@@ -76,7 +78,7 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
if
query
is
None
:
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
else
:
if
offset
>
0
:
# 首次搜索时不需要过滤已读
if
offset
>
0
:
# 首次搜索时不需要过滤已读
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
if
have_read_topic_id_list
==
None
:
have_read_topic_id_list
=
list
()
...
...
@@ -86,66 +88,71 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
attention_tag_list
=
list
()
recommend_topic_list
=
list
()
if
query
is
None
:
if
user_id
!=
-
1
:
# 有用标签召回
if
usefulrecall
!=
-
1
:
useful_topic_id_list
=
TopicUtils
.
userful_tag_topic_list
(
user_id
,
have_read_topic_id_list
,
4
,
"topic-high-star"
,
"6"
)
# user_similar_score_redis_key = "physical:user_similar_score:user_id:" + str(user_id)
# redis_user_similar_score_redis_val = redis_client.get(user_similar_score_redis_key)
# user_similar_score_redis_list = json.loads(
# redis_user_similar_score_redis_val) if redis_user_similar_score_redis_val else []
size
=
size
-
len
(
useful_topic_id_list
)
have_read_topic_id_list
.
extend
(
useful_topic_id_list
)
# linucb 推荐帖子
topic_recommend_redis_key
=
"physical:linucb:topic_recommend:device_id:"
+
str
(
device_id
)
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
linucb_recommend_topic_id_list
=
list
()
recommend_topic_list
=
list
()
if
b
"data"
in
recommend_topic_dict
:
linucb_recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
if
linucb_recommend_topic_id_list
==
None
:
linucb_recommend_topic_id_list
=
list
()
# 推荐帖子是强插的,要保证推荐帖子不在已读里
logging
.
warning
(
"type1:
%
s,type2:
%
s"
%
(
type
(
linucb_recommend_topic_id_list
),
type
(
have_read_topic_id_list
)))
recommend_topic_id_list
=
list
(
set
(
linucb_recommend_topic_id_list
)
-
set
(
have_read_topic_id_list
))
recommend_topic_id_list
.
sort
(
key
=
linucb_recommend_topic_id_list
.
index
)
# cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
# newcursor = cursor + 6
if
len
(
recommend_topic_id_list
)
>
0
:
recommend_topic_list
=
recommend_topic_id_list
[
0
:
size
]
if
user_id
!=
-
1
:
# 有用标签召回
if
usefulrecall
!=
-
1
:
useful_topic_id_list
=
TopicUtils
.
userful_tag_topic_list
(
user_id
,
have_read_topic_id_list
,
4
,
"topic-high-star"
,
"6"
)
# user_similar_score_redis_key = "physical:user_similar_score:user_id:" + str(user_id)
# redis_user_similar_score_redis_val = redis_client.get(user_similar_score_redis_key)
# user_similar_score_redis_list = json.loads(
# redis_user_similar_score_redis_val) if redis_user_similar_score_redis_val else []
size
=
size
-
len
(
useful_topic_id_list
)
have_read_topic_id_list
.
extend
(
useful_topic_id_list
)
# linucb 推荐帖子
topic_recommend_redis_key
=
"physical:linucb:topic_recommend:device_id:"
+
str
(
device_id
)
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
linucb_recommend_topic_id_list
=
list
()
recommend_topic_list
=
list
()
if
b
"data"
in
recommend_topic_dict
:
linucb_recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
if
linucb_recommend_topic_id_list
==
None
:
linucb_recommend_topic_id_list
=
list
()
# 推荐帖子是强插的,要保证推荐帖子不在已读里
logging
.
warning
(
"type1:
%
s,type2:
%
s"
%
(
type
(
linucb_recommend_topic_id_list
),
type
(
have_read_topic_id_list
)))
recommend_topic_id_list
=
list
(
set
(
linucb_recommend_topic_id_list
)
-
set
(
have_read_topic_id_list
))
recommend_topic_id_list
.
sort
(
key
=
linucb_recommend_topic_id_list
.
index
)
# cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
# newcursor = cursor + 6
if
len
(
recommend_topic_id_list
)
>
0
:
recommend_topic_list
=
recommend_topic_id_list
[
0
:
size
]
# redis_client.hset(topic_recommend_redis_key, "cursor", newcursor)
if
b
"datadict"
in
recommend_topic_dict
:
linucb_recommend_topic_id_dict
=
json
.
loads
(
recommend_topic_dict
[
b
"datadict"
])
if
linucb_recommend_topic_id_dict
is
not
None
and
len
(
recommend_topic_list
)
>
0
:
for
i
in
recommend_topic_list
:
recommend_topic_user_list
.
append
(
linucb_recommend_topic_id_dict
[
str
(
i
)])
# if have_read_topic_id_list == None:
# have_read_topic_id_list = list()
# 用户关注标签
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
if
len
(
recommend_topic_list
)
>
0
:
size
=
size
-
len
(
recommend_topic_list
)
have_read_topic_id_list
.
extend
(
recommend_topic_list
)
# have_read_topic_id_list_add_promote = list()
# have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
# promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
# is_online=1).values_list("topic_id",flat=True)
#
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
if
b
"datadict"
in
recommend_topic_dict
:
linucb_recommend_topic_id_dict
=
json
.
loads
(
recommend_topic_dict
[
b
"datadict"
])
if
linucb_recommend_topic_id_dict
is
not
None
and
len
(
recommend_topic_list
)
>
0
:
for
i
in
recommend_topic_list
:
recommend_topic_user_list
.
append
(
linucb_recommend_topic_id_dict
[
str
(
i
)])
# if have_read_topic_id_list == None:
# have_read_topic_id_list = list()
# 用户关注标签
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
if
len
(
recommend_topic_list
)
>
0
:
size
=
size
-
len
(
recommend_topic_list
)
have_read_topic_id_list
.
extend
(
recommend_topic_list
)
# have_read_topic_id_list_add_promote = list()
# have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
# promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
# is_online=1).values_list("topic_id",flat=True)
#
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
rank_topic_id_list
=
list
()
if
size
>
0
:
if
size
>
0
:
rank_topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
tag_id
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
index_type
,
routing
=
topic_star_routing
,
attention_tag_list
=
attention_tag_list
,
linucb_user_id_list
=
recommend_topic_user_list
,
disable_collpase
=
disable_collpase
)
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
index_type
,
routing
=
topic_star_routing
,
attention_tag_list
=
attention_tag_list
,
linucb_user_id_list
=
recommend_topic_user_list
,
disable_collpase
=
disable_collpase
)
# if len(recommend_topic_list) == 6 and query is None:
# if (size < 11):
...
...
@@ -162,7 +169,7 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
# topic_id_list.extend(rank_topic_id_list)
have_read_topic_id_list
.
extend
(
rank_topic_id_list
)
if
len
(
have_read_topic_id_list
)
>
30000
:
cut_len
=
len
(
have_read_topic_id_list
)
-
30000
cut_len
=
len
(
have_read_topic_id_list
)
-
30000
have_read_topic_id_list
=
have_read_topic_id_list
[
cut_len
:]
redis_dict
=
{
"have_read_topic_list"
:
json
.
dumps
(
have_read_topic_id_list
),
...
...
@@ -171,13 +178,13 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
# 每个session key保存60天
redis_client
.
expire
(
redis_key
,
60
*
60
*
24
*
60
)
if
usefulrecall
!=
-
1
:
return
recommend_topic_list
,
rank_topic_id_list
,
useful_topic_id_list
return
recommend_topic_list
,
rank_topic_id_list
,
useful_topic_id_list
else
:
return
recommend_topic_list
,
rank_topic_id_list
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
if
usefulrecall
!=
-
1
:
return
[],
[],
[]
return
[],
[],
[]
else
:
return
[],
[]
...
...
@@ -192,7 +199,8 @@ def query_tag_id_by_topic(offset=0, size=10, topic_id_list=[], user_id=-1):
@bind
(
"physical/search/home_recommend"
)
def
home_recommend
(
device_id
=
""
,
user_id
=-
1
,
offset
=
0
,
size
=
10
,
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
usefulrecall
=
-
1
):
def
home_recommend
(
device_id
=
""
,
user_id
=-
1
,
offset
=
0
,
size
=
10
,
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
usefulrecall
=-
1
):
"""
:remark:首页推荐,目前只推荐日记
:param session_id:
...
...
@@ -225,26 +233,33 @@ def home_recommend(device_id="", user_id=-1, offset=0, size=10, query_type=Topic
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
if
len
(
have_read_topic_id_list
)
>
offset
:
recommend_topic_ids
=
have_read_topic_id_list
[
offset
:
offset
+
size
]
recommend_topic_ids
=
have_read_topic_id_list
[
offset
:
offset
+
size
]
else
:
recommend_topic_ids
=
have_read_topic_id_list
[
0
:
size
]
else
:
if
usefulrecall
!=
-
1
:
recommend_topic_ids
,
rank_topic_ids
,
useful_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
,
usefulrecall
=
usefulrecall
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
,
"useful_topic_ids"
:
useful_topic_ids
}
else
:
recommend_topic_ids
,
rank_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
}
if
usefulrecall
!=
-
1
:
recommend_topic_ids
,
rank_topic_ids
,
useful_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
,
usefulrecall
=
usefulrecall
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
,
"useful_topic_ids"
:
useful_topic_ids
}
else
:
recommend_topic_ids
,
rank_topic_ids
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
query_type
=
query_type
,
promote_topic_list
=
promote_topic_list
)
return
{
"linucb_topic_ids"
:
recommend_topic_ids
,
"rank_topic_ids"
:
rank_topic_ids
}
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
if
usefulrecall
!=
-
1
:
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:[],
"useful_topic_ids"
:
[]}
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:
[],
"useful_topic_ids"
:
[]}
else
:
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:
[]}
return
{
"linucb_topic_ids"
:
[],
"rank_topic_ids"
:
[]}
@bind
(
"physical/search/discover_page"
)
...
...
@@ -288,11 +303,12 @@ def home_query(device_id="", tag_id=-1, user_id=-1, query="", offset=0, size=10)
if
not
isinstance
(
device_id
,
str
):
device_id
=
""
recommend_topic_list
,
rank_topic_id_list
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
=
offset
,
size
=
size
,
query
=
query
)
if
len
(
rank_topic_id_list
)
>
0
and
len
(
rank_topic_id_list
)
<
size
:
recommend_topic_list
,
rank_topic_id_list
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
=
offset
,
size
=
size
,
query
=
query
)
if
len
(
rank_topic_id_list
)
>
0
and
len
(
rank_topic_id_list
)
<
size
:
recommend_topic_list
,
rank_topic_id_list
=
get_home_recommend_topic_ids
(
user_id
,
device_id
,
tag_id
,
offset
=
offset
,
size
=
size
,
query
=
query
,
disable_collpase
=
True
)
query
=
query
,
disable_collpase
=
True
)
return
{
"recommend_topic_ids"
:
rank_topic_id_list
}
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
...
...
@@ -314,9 +330,9 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
if
not
isinstance
(
user_id
,
int
):
user_id
=
-
1
if
user_id
>
0
:
redis_key
=
"physical:topic_detail_recommend"
+
":user_id:"
+
str
(
user_id
)
+
"topic_id:"
+
str
(
topic_id
)
redis_key
=
"physical:topic_detail_recommend"
+
":user_id:"
+
str
(
user_id
)
+
"topic_id:"
+
str
(
topic_id
)
else
:
redis_key
=
"physical:topic_detail_recommend"
+
":device_id:"
+
device_id
+
"topic_id:"
+
str
(
topic_id
)
redis_key
=
"physical:topic_detail_recommend"
+
":device_id:"
+
device_id
+
"topic_id:"
+
str
(
topic_id
)
if
int
(
offset
)
==
0
:
have_read_topic_list
=
list
()
# redis_dict = {
...
...
@@ -329,7 +345,7 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
have_read_topic_list
=
list
()
redis_field_list
=
[
b
'have_read_topic_list'
]
have_read_topic_redis_data
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
have_read_topic_redis_data
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
have_read_topic_list
=
json
.
loads
(
have_read_topic_redis_data
[
0
])
if
have_read_topic_redis_data
[
0
]
else
[]
es_cli_obj
=
ESPerform
.
get_cli
()
have_read_topic_list
.
append
(
topic_id
)
...
...
@@ -337,28 +353,33 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
topic_tag_result
=
list
()
result
=
list
()
if
len
(
topic_tag_list
)
!=
0
:
topic_tag_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_tag_list
=
topic_tag_list
)
topic_tag_size
=
len
(
topic_tag_result
)
have_read_topic_list
.
extend
(
topic_tag_result
)
else
:
topic_tag_size
=
0
if
topic_tag_size
<
size
:
size
=
size
-
topic_tag_size
if
topic_user_id
!=
-
1
:
topic_user_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
topic_tag_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_user_id
=
topic_user_id
)
topic_user_size
=
len
(
topic_user_result
)
have_read_topic_list
.
extend
(
topic_user_result
)
if
topic_user_size
<
size
:
size
=
size
-
topic_user_size
result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
have_read_topic_list
.
extend
(
result
)
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_tag_list
=
topic_tag_list
)
topic_tag_size
=
len
(
topic_tag_result
)
have_read_topic_list
.
extend
(
topic_tag_result
)
else
:
topic_tag_size
=
0
if
topic_tag_size
<
size
:
size
=
size
-
topic_tag_size
if
topic_user_id
!=
-
1
:
topic_user_result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"3,4,5,6"
,
topic_user_id
=
topic_user_id
)
topic_user_size
=
len
(
topic_user_result
)
have_read_topic_list
.
extend
(
topic_user_result
)
if
topic_user_size
<
size
:
size
=
size
-
topic_user_size
result
=
TopicUtils
.
top_get_topic_detail_recommend_list
(
user_id
,
topic_id
,
have_read_topic_list
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
have_read_topic_list
.
extend
(
result
)
# have_read_topic_redis_data = redis_client.get(redis_key)
# have_read_topic_list = json.loads(have_read_topic_redis_data) if have_read_topic_redis_data else []
...
...
@@ -434,8 +455,8 @@ def topic_search(filters, nfilters=None, sorts_by=None, offset=0, size=10):
"""帖子搜索。"""
try
:
(
topic_id_list
,
total_count
)
=
TopicUtils
.
list_topic_ids
(
filters
=
filters
,
nfilters
=
nfilters
,
sorts_by
=
sorts_by
,
offset
=
offset
,
size
=
size
)
(
topic_id_list
,
total_count
)
=
TopicUtils
.
list_topic_ids
(
filters
=
filters
,
nfilters
=
nfilters
,
sorts_by
=
sorts_by
,
offset
=
offset
,
size
=
size
)
return
{
"topic_ids"
:
topic_id_list
,
...
...
@@ -458,10 +479,26 @@ def query_topic_by_user_similarity(topic_similarity_score_dict, offset=0, size=1
try
:
must_topic_id_list
=
list
(
topic_similarity_score_dict
.
keys
())
topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
tag_id
=
0
,
user_id
=-
1
,
offset
=
offset
,
size
=
size
,
single_size
=
size
,
must_topic_id_list
=
must_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
tag_id
=
0
,
user_id
=-
1
,
offset
=
offset
,
size
=
size
,
single_size
=
size
,
must_topic_id_list
=
must_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
)
return
{
"recommend_topic_ids"
:
topic_id_list
}
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
return
{
"recommend_topic_id"
:
[]}
@bind
(
"physical/search/query_topic_search"
)
def
query_topic_search
(
query
=
""
):
"""
召回搜索帖子
当搜索的内容 完全匹配 用户昵称,且该用户为推荐用户时,帖子tab中也会展示用户栏
:param query:
:return:
"""
#召回完全匹配的用户
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment