# -*- coding: utf-8 -*-
"""
Created on Mon Sep 25 14:34:45 2017

calculate monthly net increase values for daily-url data
1 if a video is released after 00:00 of the first day of each month, the
accumulated values is used as monthly_net_inc values directly.
2 if a video is released before 00:00 of the first day of each month, the
current accumulated values will be substracted by the accumulated values at
the day before the first day of each month.
2.1 if a video is released before the first day of a month, but it's historical
data is not aviable

migrate to be a function on Oct 03 2017

Nov 18 2017
Add multi-threads.
Auto distribute data by release_time into threads.

Modify release_time range to be from 60 days before the passed-in date.
The reason for doing this is, data from earlier time have tiny chance to found
historical data for net increase values calculation. This lead to more search time,
which slows down the whole calculation process.

Jul 16 2018
Refactoring.
Breaking change:
    Function cal_monthly_net_inc's argument search_body changed to
be a search_body_logic_part, which is part of a complete search
body, not a json body that can be used directly in search.

@author: hanye
"""

import json
import copy
import datetime
import logging
import threading
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import _thread
from func_calculate_toutiao_video_id import calculate_toutiao_video_id
from func_calculate_newTudou_video_id import calculate_newTudou_video_id


hosts = '192.168.17.11'
port = 9200
es_read = Elasticsearch(hosts=hosts, port=port)
es_write = Elasticsearch(hosts=hosts, port=port)

index_sv = 'short-video-production'
doc_type_daily_url = 'daily-url'

def find_first_day_of_the_month(fetch_year, fetch_month, fetch_day):
    if fetch_day > 1:
        first_day_of_the_month_T = datetime.datetime(year=fetch_year,
                                                     month=fetch_month,
                                                     day=1)
    elif fetch_day == 1:
        if fetch_month > 1:
            first_day_of_the_month_T = datetime.datetime(year=fetch_year,
                                                         month=fetch_month-1,
                                                         day=1)
        elif fetch_month == 1:
            first_day_of_the_month_T = datetime.datetime(year=fetch_year-1,
                                                         month=12,
                                                         day=1)
    return first_day_of_the_month_T


def form_bulk_body(line_data, doc_id):
    # 3.1 update line_data dict
    # added update timestamp when calculate monthly_net_inc values on Oct 16 2017
    line_data.update({'timestamp': int(datetime.datetime.now().timestamp()*1e3)})
    # 3.2 form json body for each line
    action_json_line_str = '{"index": {"_id":"' + doc_id + '"}}'
    line_data.pop('_id', None)
    data_json_line_str = json.dumps(line_data, ensure_ascii=False)
    line_bulk_body = (action_json_line_str + '\n'
                      + data_json_line_str + '\n')
    return line_bulk_body


def bulk_write(thread_id, logger,
               data_dict_Lst, doc_type_target,
               index=index_sv):
    bulk_body = ''
    for data_dict in data_dict_Lst:
        doc_id = data_dict['_id']
        line_bulk_body = form_bulk_body(data_dict, doc_id)
        bulk_body += line_bulk_body
    t_s = datetime.datetime.now()
    es_write.bulk(body=bulk_body, index=index,
                  doc_type=doc_type_target,
                  request_timeout=100)
    logger.info('[ %d ] update %s with %d docs.'
                % (thread_id, doc_type_target, len(data_dict_Lst)))
    t_e = datetime.datetime.now()
    t_delta = t_e-t_s
    logger.info('[ %d ] bulk write for one data batch time spent %s'
                % (thread_id, t_delta))
    # 3.5 clear data_raw_collector after bulk write
    data_dict_Lst.clear()


def form_search_body_hist_uncomp(platform, fetch_time_upper_boundary_ts,
                                 fetch_time_lower_boundary_ts,
                                 url):
    if platform in ['toutiao', 'new_tudou']:
        videoID = cal_vid_from_url(platform, url)
        search_body_hist_uncomp = {
            "query": {
                "bool": {
                    "must": [
                        {"range": {"fetch_time": {
                            "gte": fetch_time_lower_boundary_ts,
                            "lt": fetch_time_upper_boundary_ts,}}},
                        {"match_phrase": {"url": videoID}},
                        {"exists": {"field": "play_count"}}
                    ],

                }
            },
            "sort": [
                {"fetch_time": {"order": "asc"}}
            ]
        }
    else:
        search_body_hist_uncomp = {
            "query": {
                "bool": {
                    "filter": [
                        {"range": {"fetch_time": {
                            "gte": fetch_time_lower_boundary_ts,
                            "lt": fetch_time_upper_boundary_ts,}}},
                        {"term": {"url.keyword": url}}
                    ],
                    "must": [
                        {"exists": {"field": "play_count"}}
                    ],
                }
            },
            "sort": [
                {"fetch_time": {"order": "asc"}}
            ]
        }
    return search_body_hist_uncomp


def cal_vid_from_url(platform, url):
    if platform == 'toutiao':
        videoID = calculate_toutiao_video_id(url)
    elif platform == 'new_tudou':
        videoID = calculate_newTudou_video_id(url)
    else:
        videoID = url
    return videoID


def get_key_field_values(logger, thread_id, line_data_dict):
    try:
        platform = line_data_dict['platform']
        line_fetch_time_ts = line_data_dict['fetch_time']
        url = line_data_dict['url']
        play_count_acc = line_data_dict['play_count']
        return (platform, line_fetch_time_ts, url, play_count_acc)
    except KeyError:
        logger.info('[%s] lack of field "platform" or "fetch_time" or "url", '
                    'function find_historical returns.'
                    % thread_id)
        return None

def update_MNI_value_for_new_released(logger, thread_id,
                                      line_data_dict):
    key_fields = get_key_field_values(logger, thread_id, line_data_dict)
    if key_fields is None:
        return None
    else:
        play_count_acc = key_fields[3]
        monthly_net_inc_play_count = play_count_acc
        monthly_cal_base = 'accumulated_values'
        if 'comment_count' in line_data_dict:
            comment_count_acc = line_data_dict['comment_count']
            monthly_net_inc_comment_count = comment_count_acc
        else:
            monthly_net_inc_comment_count = 0
        if 'favorite_count' in line_data_dict:
            favorite_count_acc = line_data_dict['favorite_count']
            monthly_net_inc_favorite_count = favorite_count_acc
        else:
            monthly_net_inc_favorite_count = 0
        line_data_dict.update({'monthly_cal_base': monthly_cal_base,
                               'monthly_net_inc_play_count': monthly_net_inc_play_count,
                               'monthly_net_inc_comment_count': monthly_net_inc_comment_count,
                               'monthly_net_inc_favorite_count': monthly_net_inc_favorite_count})
        return line_data_dict


def find_historical(logger, stdout_lock, thread_id,
                    first_day_of_the_month_T, line_data_dict,
                    f_err_log):
    key_fields = get_key_field_values(logger, thread_id, line_data_dict)
    if key_fields is None:
        return None
    else:
        platform = key_fields[0]
        line_fetch_time_ts = key_fields[1]
        url = key_fields[2]
        play_count_acc = key_fields[3]

    zero_oclock_on_first_day_T = datetime.datetime(first_day_of_the_month_T.year,
                                                   first_day_of_the_month_T.month,
                                                   first_day_of_the_month_T.day)
    twenty_four_oclock_on_first_day_T = (zero_oclock_on_first_day_T
                                         + datetime.timedelta(seconds=24*3600))
    twenty_four_oclock_on_first_day_ts = int(twenty_four_oclock_on_first_day_T.timestamp()*1e3)
    fetch_time_lower_boundary_ts = int(zero_oclock_on_first_day_T.timestamp()*1e3)
    fetch_time_upper_boundary_ts = line_fetch_time_ts

    search_body_hist_uncomp = form_search_body_hist_uncomp(
        platform, fetch_time_upper_boundary_ts, fetch_time_lower_boundary_ts, url)

    search_resp = es_read.search(index=index_sv,
                                 doc_type=doc_type_daily_url,
                                 body=search_body_hist_uncomp,
                                 size=10,
                                 request_timeout=100)
    hist_data_raw_collector = search_resp['hits']['hits']
    search_resp_total = search_resp['hits']['total']
    if search_resp_total >= 1:
        earliest_hist_data = hist_data_raw_collector[0]['_source']
        hist_data_id = hist_data_raw_collector[0]['_id']

        earliest_hist_data_fetch_time = earliest_hist_data['fetch_time']
        play_count_acc_history = int(earliest_hist_data['play_count'])
        monthly_net_inc_play_count = play_count_acc - play_count_acc_history
        monthly_cal_base_fetch_time = earliest_hist_data_fetch_time

        if earliest_hist_data_fetch_time <= twenty_four_oclock_on_first_day_ts:
            monthly_cal_base = 'historical_complete'
        else:
            monthly_cal_base = 'historical_uncomplete'

        if 'comment_count' in earliest_hist_data and 'comment_count' in line_data_dict:
            comment_count_acc = line_data_dict['comment_count']
            comment_count_acc_history = int(earliest_hist_data['comment_count'])
            monthly_net_inc_comment_count = comment_count_acc - comment_count_acc_history
        else:
            monthly_net_inc_comment_count = 0

        if 'favorite_count' in earliest_hist_data and 'favorite_count' in line_data_dict:
            favorite_count_acc = line_data_dict['favorite_count']
            favorite_count_acc_history = int(earliest_hist_data['favorite_count'])
            monthly_net_inc_favorite_count = favorite_count_acc - favorite_count_acc_history
        else:
            monthly_net_inc_favorite_count = 0

        line_data_dict.update({'monthly_cal_base': monthly_cal_base,
                               'monthly_net_inc_play_count': monthly_net_inc_play_count,
                               'monthly_cal_base_fetch_time': monthly_cal_base_fetch_time,
                               'MNI_hist_data_id': hist_data_id,
                               'monthly_net_inc_comment_count': monthly_net_inc_comment_count,
                               'monthly_net_inc_favorite_count': monthly_net_inc_favorite_count})
    # if there are no hits, leave the monthly_net_inc fields empty, and
    # tag monthly_cal_base as historical_data_absent
    else:
        with stdout_lock:
            print('[', thread_id, ']', url, 'found no historical data in present survey date range',
                  datetime.datetime.fromtimestamp(fetch_time_lower_boundary_ts/1e3),
                  'to', datetime.datetime.fromtimestamp(fetch_time_upper_boundary_ts/1e3),
                  file=f_err_log)
        monthly_cal_base = 'historical_data_absent'
        line_data_dict.update({'monthly_cal_base': monthly_cal_base,})
    return line_data_dict


# 1.2 define sub-function to run in thread
def cal_monthly_net_inc_and_write_es_in_thread(
        thread_id, logger, es_read,
        index, doc_type_target,
        search_body_in_thread,
        first_day_of_the_month_T,
        stdout_lock,
        f_err_log):
    logger.info('[ %d ] search_body_in_thread %s'
                % (thread_id, str(search_body_in_thread)))
    find_hits_total_in_threads = es_read.search(index=index,
                                                doc_type=doc_type_target,
                                                body=search_body_in_thread,
                                                size=0,
                                                request_timeout=100)
    hits_total_in_threads = find_hits_total_in_threads['hits']['total']
    logger.info('[ %d ] hits_total_in_threads %d'
                % (thread_id, hits_total_in_threads))
    scan_response = scan(client=es_read,
                         query=search_body_in_thread,
                         index=index,
                         doc_type=doc_type_target,
                         scroll='5m',
                         size=1000,
                         request_timeout=100)

    data_raw_collector = []
    line_counter = 0
    for line in scan_response:
        line_counter += 1
        raw_line = line
        line_doc_id = raw_line['_id']
        line_data = raw_line['_source']
        release_time = int(line_data['release_time'])
        release_time_T = datetime.datetime.fromtimestamp(int(release_time/1e3))
        if release_time_T >= first_day_of_the_month_T:
            line_data = update_MNI_value_for_new_released(logger, thread_id,
                                                          line_data)
        else:
            line_data = find_historical(logger, stdout_lock, thread_id,
                                        first_day_of_the_month_T,
                                        line_data,
                                        f_err_log)
        line_data['_id'] = line_doc_id
        data_raw_collector.append(line_data)
        # update monthly_net_inc values every 1000 docs
        if line_counter%1000 == 0 or line_counter == hits_total_in_threads:
            logger.info('[ %d ] processing %d / %d'
                        % (thread_id, line_counter, hits_total_in_threads))
            bulk_write(thread_id, logger, data_raw_collector,
                       doc_type_target, index=index_sv)
            data_raw_collector.clear()
    if data_raw_collector != []:
        logger.info('[ %d ] processing %d / %d'
                    % (thread_id, line_counter, hits_total_in_threads))
        bulk_write(thread_id, logger, data_raw_collector,
                   doc_type_target, index=index_sv)
        data_raw_collector.clear()

    logger.info('[ %d ] Thread exits. %s' % (thread_id, datetime.datetime.now()))


def divid_by_release_time(logger, threads_num, average_data_num,
                          data_distr_by_release_time_Lst):
    # 1.1 By total hits and data distribution by release_time
    # find proper release_time range for multi-threads
    release_time_range_Lst = []
    # find the end side of each range segment
    data_counter_collector = 0
    distr_idx = 0
    for distr_by_releaseT in data_distr_by_release_time_Lst:
        data_num_each_day = distr_by_releaseT['doc_count']
        data_counter_collector += data_num_each_day
        if (data_counter_collector > average_data_num*0.9
                or distr_idx == len(data_distr_by_release_time_Lst)-1):
            release_time_range_dict = {'start':None, 'end':None,
                                       'end_idx': distr_idx,
                                       'data_num': data_counter_collector}
            release_time_range_Lst.append(release_time_range_dict)
            data_counter_collector = 0
        distr_idx += 1

    # fillup the start timestamp and the end timestamp
    start_side_cache = data_distr_by_release_time_Lst[0]['key']
    for range_seg in release_time_range_Lst:
        if range_seg['end_idx']+1 > len(data_distr_by_release_time_Lst)-1:
            range_seg['end'] = int(data_distr_by_release_time_Lst[range_seg['end_idx']]['key']
                                   + 24 * 3600 * 1e3)
        else:
            range_seg['end'] = data_distr_by_release_time_Lst[range_seg['end_idx']+1]['key']
        range_seg['start'] = start_side_cache
        start_side_cache = range_seg['end']

    # in case the splitted range segments are longer or shorter than threads_num
    if len(release_time_range_Lst) != threads_num:
        threads_num = len(release_time_range_Lst)
    logger.info('Actual threads_num %d' % threads_num)
    logger.info('release_time_range_Lst:\n %s' % str(release_time_range_Lst))
    return (threads_num, release_time_range_Lst)


def cal_monthly_net_inc(fetch_year, fetch_month, fetch_day,
                        fetch_hour=0,
                        fetch_time_seg_hours=24,
                        doc_type_target='daily-url',
                        search_body_logic_part=None,
                        threads_num=5,
                        logger_name='calculate_monthly_net_inc'):
    date_passed_in = datetime.datetime(year=fetch_year, month=fetch_month,
                                       day=fetch_day, hour=fetch_hour)
    first_day_of_the_month_T = find_first_day_of_the_month(fetch_year, fetch_month, fetch_day)

    logger = logging.getLogger('%s.func' % logger_name)
    log_path = ('/home/hanye/project_data/Python/Projects/proj-short-videos/'
                'write-data-into-es/log/')
    logger.info('************ log starts')
    logger.info('calculate monthly net_inc values')
    err_log_filename = ('calculate_monthly_net_inc_for_'
                        + str(fetch_year) + '_'
                        + str(fetch_month) + '_'
                        + str(fetch_day) + '_error_log'+ '_'
                        + str(datetime.datetime.now())[0:10])
    f_err_log = open(log_path+err_log_filename, 'a', encoding='gb18030')

    t_s_cal = datetime.datetime.now()

    # 1 get all the data from ccr es for given fetch_time
    # from _type=daily-url
    fetch_time_start_ts = int(date_passed_in.timestamp()*1e3)
    fetch_time_end_ts = int((date_passed_in
                             + datetime.timedelta(seconds=fetch_time_seg_hours*3600)
                            ).timestamp()*1e3)

    fetch_time_start_iso = datetime.datetime.fromtimestamp(
        int(fetch_time_start_ts/1e3)).isoformat()
    fetch_time_end_iso = datetime.datetime.fromtimestamp(
        int(fetch_time_end_ts/1e3)).isoformat()
    logger.info(('fetch_time_start: %s, fetch_time_end: %s'
                 % (fetch_time_start_iso, fetch_time_end_iso)))
    # Modify release_time range to be from 90 days before the passed-in date
    # Nov 18 2017
    release_time_start_ts = int((date_passed_in - datetime.timedelta(days=60))
                                .timestamp()*1000)
    release_time_end_ts = int((date_passed_in + datetime.timedelta(days=365))
                              .timestamp()*1000)
    search_body = {
        "query": {
            "bool": {
                "filter": [
                    {"range": {"release_time": {
                        "gte": release_time_start_ts,
                        "lt": release_time_end_ts}}
                    },
                    {"range": {"fetch_time": {
                        "gte": fetch_time_start_ts,
                        "lt": fetch_time_end_ts}}
                    }
                ],
            }
        },
        "size": 2,
        "aggs": {
            "release_time_distribution": {
                "date_histogram": {
                    "field": "release_time",
                    "interval": "day",
                    "time_zone": "Asia/Shanghai"
                }
            }
        }
    }

    if search_body_logic_part is not None:
        if 'filter' in search_body_logic_part:
            search_body['query']['bool']['filter'].append(search_body_logic_part['filter'])
        else:
            search_body['query']['bool'].update(search_body_logic_part)
    else:
        pass
    search_response = es_read.search(index=index_sv,
                                     doc_type=doc_type_target,
                                     body=search_body,
                                     request_timeout=100)
    hits_total = search_response['hits']['total']
    logger.info('find total hits %d in _type %s.'
                % (hits_total, doc_type_target))
    if hits_total == 0:
        return
    else:
        pass

    # 1.1 By total hits and data distribution by release_time
    # find proper release_time range for multi-threads
    data_distr_by_release_time_Lst = search_response['aggregations']['release_time_distribution']['buckets']
    average_data_num = hits_total // threads_num
    sharding_by_release_time = divid_by_release_time(logger, threads_num,
                                                     average_data_num,
                                                     data_distr_by_release_time_Lst)
    threads_num = sharding_by_release_time[0]
    release_time_range_Lst = sharding_by_release_time[1]

    # global lock to prevent conflit on stdout when print
    # used for error log
    stdout_lock = _thread.allocate_lock()

    search_body_in_thread_Lst = []
    waitfor = []
    for i in range(0, threads_num):
        release_time_ts_start = release_time_range_Lst[i]['start']
        release_time_ts_end = release_time_range_Lst[i]['end']
        search_body_in_thread = copy.deepcopy(search_body)
        search_body_in_thread.pop('size', None)
        search_body_in_thread.pop('aggs', None)
        search_body_in_thread['query']['bool']['filter'][0]['range']['release_time']['gte'] = release_time_ts_start
        search_body_in_thread['query']['bool']['filter'][0]['range']['release_time']['lt'] = release_time_ts_end
        search_body_in_thread['query']['bool']['filter'][1]['range']['fetch_time']['gte'] = fetch_time_start_ts
        search_body_in_thread['query']['bool']['filter'][1]['range']['fetch_time']['lt'] = fetch_time_end_ts

        search_body_in_thread_Lst.append(search_body_in_thread)

        thread = threading.Thread(target=cal_monthly_net_inc_and_write_es_in_thread,
                                  args=(i, logger, es_read, index_sv,
                                        doc_type_target, search_body_in_thread_Lst[i],
                                        first_day_of_the_month_T,
                                        stdout_lock, f_err_log))
        waitfor.append(thread)
        thread.start()

    # check if every thread exists
    for thread in waitfor:
        thread.join()

    t_e_cal = datetime.datetime.now()
    t_delta_cal = t_e_cal-t_s_cal
    logger.info('for all data of date %s total time cost: %s'
                % (date_passed_in.isoformat()[:10], t_delta_cal))
    logger.info('Main thread exiting.')
    f_err_log.close()