Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
57d4f6ea
Commit
57d4f6ea
authored
Jun 23, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
特征工程优化
parent
633be5ab
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
126 additions
and
34 deletions
+126
-34
featureEng.py
spark/featureEng.py
+126
-34
No files found.
spark/featureEng.py
View file @
57d4f6ea
...
@@ -63,10 +63,11 @@ FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION
...
@@ -63,10 +63,11 @@ FEATURE_VOCAB_KEY = "Strategy:rec:vocab:service:" + VERSION
FEATURE_COLUMN_KEY
=
"Strategy:rec:column:service:"
+
VERSION
FEATURE_COLUMN_KEY
=
"Strategy:rec:column:service:"
+
VERSION
TRAIN_FILE_PATH
=
"service_feature_"
+
VERSION
TRAIN_FILE_PATH
=
"service_feature_"
+
VERSION
ITEM_PREFIX
=
"item_"
def
addItemFeatures
(
samples
,
itemDF
):
def
addItemFeatures
(
samples
,
itemDF
):
prefix
=
"item_"
itemDF
=
itemDF
.
withColumnRenamed
(
"id"
,
"itemid"
)
itemDF
=
itemDF
.
withColumnRenamed
(
"id"
,
"itemid"
)
# 数据过滤:无医生
# 数据过滤:无医生
itemDF
=
itemDF
.
filter
(
col
(
"doctor_id"
)
!=
"-1"
)
itemDF
=
itemDF
.
filter
(
col
(
"doctor_id"
)
!=
"-1"
)
...
@@ -74,18 +75,18 @@ def addItemFeatures(samples,itemDF):
...
@@ -74,18 +75,18 @@ def addItemFeatures(samples,itemDF):
# null处理
# null处理
for
c
in
ITEM_NUMBER_COLUMNS
:
for
c
in
ITEM_NUMBER_COLUMNS
:
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
prefix
+
c
,
when
(
col
(
c
)
.
isNull
(),
0
)
.
otherwise
(
col
(
c
))
.
cast
(
"float"
))
.
drop
(
c
)
itemDF
=
itemDF
.
withColumn
(
ITEM_PREFIX
+
c
,
when
(
col
(
c
)
.
isNull
(),
0
)
.
otherwise
(
col
(
c
))
.
cast
(
"float"
))
.
drop
(
c
)
for
c
in
ITEM_CATE_COLUMNS
:
for
c
in
ITEM_CATE_COLUMNS
:
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
prefix
+
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
.
drop
(
c
)
itemDF
=
itemDF
.
withColumn
(
ITEM_PREFIX
+
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
.
drop
(
c
)
# 离散特征处理
# 离散特征处理
for
c
,
v
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
items
():
for
c
,
v
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
items
():
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
itemDF
=
itemDF
.
withColumn
(
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
for
i
in
range
(
1
,
v
+
1
):
for
i
in
range
(
1
,
v
+
1
):
new_c
=
prefix
+
c
+
"__"
+
str
(
i
)
new_c
=
ITEM_PREFIX
+
c
+
"__"
+
str
(
i
)
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
split
(
F
.
col
(
c
),
","
)[
i
-
1
])
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
split
(
F
.
col
(
c
),
","
)[
i
-
1
])
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
when
(
F
.
col
(
new_c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
new_c
)))
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
when
(
F
.
col
(
new_c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
new_c
)))
...
@@ -109,7 +110,7 @@ def addItemFeatures(samples,itemDF):
...
@@ -109,7 +110,7 @@ def addItemFeatures(samples,itemDF):
# pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c+"Scale"))
# pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c+"Scale"))
# bucketing
# bucketing
bucketColumns
=
[
prefix
+
"case_count"
,
prefix
+
"ordered_user_ids_count"
,
prefix
+
"lowest_price"
,
"itemRatingCount"
,
"itemRatingStddev"
,
"itemRatingAvg"
]
bucketColumns
=
[
ITEM_PREFIX
+
"case_count"
,
ITEM_PREFIX
+
"ordered_user_ids_count"
,
ITEM_PREFIX
+
"lowest_price"
,
"itemRatingCount"
,
"itemRatingStddev"
,
"itemRatingAvg"
]
for
c
in
bucketColumns
:
for
c
in
bucketColumns
:
pipelineStage
.
append
(
QuantileDiscretizer
(
numBuckets
=
10
,
inputCol
=
c
,
outputCol
=
c
+
"Bucket"
))
pipelineStage
.
append
(
QuantileDiscretizer
(
numBuckets
=
10
,
inputCol
=
c
,
outputCol
=
c
+
"Bucket"
))
...
@@ -193,7 +194,7 @@ def addUserFeatures(samples):
...
@@ -193,7 +194,7 @@ def addUserFeatures(samples):
def
addSampleLabel
(
ratingSamples
):
def
addSampleLabel
(
ratingSamples
):
ratingSamples
=
ratingSamples
.
withColumn
(
'label'
,
when
(
F
.
col
(
'rating'
)
>=
1
,
1
)
.
otherwise
(
0
))
ratingSamples
=
ratingSamples
.
withColumn
(
'label'
,
when
(
F
.
col
(
'rating'
)
>=
8
,
1
)
.
otherwise
(
0
))
ratingSamples
.
show
(
5
,
truncate
=
False
)
ratingSamples
.
show
(
5
,
truncate
=
False
)
ratingSamples
.
printSchema
()
ratingSamples
.
printSchema
()
return
ratingSamples
return
ratingSamples
...
@@ -224,7 +225,7 @@ def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path
...
@@ -224,7 +225,7 @@ def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path
test
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
testSavePath
)
test
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
testSavePath
)
def
getDataVocab
(
samples
):
def
getDataVocab
(
samples
,
model_columns
):
dataVocab
=
{}
dataVocab
=
{}
multiVocab
=
{}
multiVocab
=
{}
...
@@ -241,8 +242,8 @@ def getDataVocab(samples):
...
@@ -241,8 +242,8 @@ def getDataVocab(samples):
multiVocab
[
c
]
=
list
(
tagSet
)
multiVocab
[
c
]
=
list
(
tagSet
)
samples
=
samples
.
drop
(
c
)
samples
=
samples
.
drop
(
c
)
# id类特征
# id类特征
和 类别特征
for
c
in
[
"userid"
,
"itemid"
]:
for
c
in
[
"userid"
,
"itemid"
]
+
[
ITEM_PREFIX
+
c
for
c
in
ITEM_CATE_COLUMNS
]
:
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
vocabSet
=
set
()
for
d
in
datas
:
for
d
in
datas
:
...
@@ -252,9 +253,9 @@ def getDataVocab(samples):
...
@@ -252,9 +253,9 @@ def getDataVocab(samples):
dataVocab
[
c
]
=
list
(
vocabSet
)
dataVocab
[
c
]
=
list
(
vocabSet
)
pass
pass
for
c
in
samples
.
columns
:
for
c
in
model_
columns
:
print
(
"col"
,
c
)
print
(
"col"
,
c
)
# 判断是否以Bucket结尾
和 类别特征
# 判断是否以Bucket结尾
if
c
.
endswith
(
"Bucket"
):
if
c
.
endswith
(
"Bucket"
):
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
vocabSet
=
set
()
...
@@ -350,8 +351,103 @@ def getEsConn_test():
...
@@ -350,8 +351,103 @@ def getEsConn_test():
def
getEsConn
():
def
getEsConn
():
return
Elasticsearch
(
SERVICE_HOSTS
,
http_auth
=
(
'elastic'
,
'gengmei!@#'
),
timeout
=
3600
)
return
Elasticsearch
(
SERVICE_HOSTS
,
http_auth
=
(
'elastic'
,
'gengmei!@#'
),
timeout
=
3600
)
def
getClickData
(
spark
,
start
,
end
):
def
getClickSql
(
start
,
end
):
positiveSql
=
"""
sql
=
"""
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.page_stay
FROM
(
select partition_date,cl_id,business_id as card_id,time_stamp,page_stay
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<'{endDay}'
AND page_name='welfare_detail'
-- AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
group by partition_date,cl_id,business_id,time_stamp,page_stay
) AS t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<'{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
getExposureSql
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
from
( --新首页卡片曝光
SELECT partition_date,cl_id,card_id,time_stamp
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<'{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and is_exposure='1'
and page_name='home'
and tab_name='精选'
and card_type in ('card','video')
and card_content_type in ('service')
group by partition_date,cl_id,card_id,time_stamp
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<'{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
getClickSql2
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay
FROM
FROM
(select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay
(select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay
...
@@ -391,16 +487,14 @@ def getClickData(spark, start, end):
...
@@ -391,16 +487,14 @@ def getClickData(spark, start, end):
on t1.cl_id=dev.device_id
on t1.cl_id=dev.device_id
WHERE dev.device_id is null
WHERE dev.device_id is null
"""
.
format
(
start
,
end
,
ACTION_REG
,
start
,
end
)
"""
.
format
(
start
,
end
,
ACTION_REG
,
start
,
end
)
print
(
positiveSql
)
print
(
sql
)
return
sql
return
spark
.
sql
(
positiveSql
)
def
getExposureSql2
(
start
,
end
):
def
getExposureData
(
spark
,
start
,
end
):
sql
=
"""
negSql
=
"""
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
FROM
FROM
(SELECT
*
(SELECT
partition_date,cl_id,card_id,time_stamp
FROM online.ml_community_precise_exposure_detail
FROM online.ml_community_precise_exposure_detail
WHERE cl_id IS NOT NULL
WHERE cl_id IS NOT NULL
AND card_id IS NOT NULL
AND card_id IS NOT NULL
...
@@ -479,8 +573,8 @@ def getExposureData(spark, start, end):
...
@@ -479,8 +573,8 @@ def getExposureData(spark, start, end):
AND t2.first_channel_source_type NOT LIKE 'promotion
\\
_jf
\\
_
%
'
AND t2.first_channel_source_type NOT LIKE 'promotion
\\
_jf
\\
_
%
'
"""
.
format
(
ACTION_REG
,
CONTENT_TYPE
,
start
,
end
)
"""
.
format
(
ACTION_REG
,
CONTENT_TYPE
,
start
,
end
)
print
(
negS
ql
)
print
(
s
ql
)
return
s
park
.
sql
(
negSql
)
return
s
ql
def
connectDoris
(
spark
,
table
):
def
connectDoris
(
spark
,
table
):
return
spark
.
read
\
return
spark
.
read
\
...
@@ -626,26 +720,24 @@ if __name__ == '__main__':
...
@@ -626,26 +720,24 @@ if __name__ == '__main__':
#入参
#入参
trainDays
=
int
(
sys
.
argv
[
1
])
trainDays
=
int
(
sys
.
argv
[
1
])
print
(
'trainDays:{}'
.
format
(
trainDays
),
flush
=
True
)
print
(
'trainDays:{}'
.
format
(
trainDays
),
flush
=
True
)
spark
=
get_spark
(
"service_feature_csv_export"
)
spark
.
sparkContext
.
setLogLevel
(
"ERROR"
)
endDay
=
addDays
(
-
1
)
endDay
=
addDays
(
-
1
)
startDay
=
addDays
(
-
(
1
+
int
(
trainDays
)))
startDay
=
addDays
(
-
(
1
+
int
(
trainDays
)))
print
(
"train_data start:{} end:{}"
.
format
(
startDay
,
endDay
))
print
(
"train_data start:{} end:{}"
.
format
(
startDay
,
endDay
))
spark
=
get_spark
(
"service_feature_csv_export"
)
spark
.
sparkContext
.
setLogLevel
(
"ERROR"
)
itemDF
=
get_service_feature_df
(
spark
)
itemDF
=
get_service_feature_df
(
spark
)
# 行为数据
# 行为数据
click
DF
=
getClickData
(
spark
,
startDay
,
endDay
)
click
Sql
=
getClickSql
(
startDay
,
endDay
)
exposureDF
=
getExposureData
(
spark
,
startDay
,
endDay
)
print
(
"--------"
)
ratingDF
=
samplesNegAndUnion
(
clickDF
,
exposureDF
)
expSql
=
getExposureSql
(
startDay
,
endDay
)
# conf = SparkConf().setAppName('featureEngineering').setMaster('local')
clickDF
=
spark
.
sql
(
clickSql
)
# spark = SparkSession.builder.config(conf=conf).getOrCreate()
expDF
=
spark
.
sql
(
expSql
)
# spark.sparkContext.setLogLevel("ERROR")
# ratingDF = samplesNegAndUnion(clickDF,expDF)
# itemDF = spark.read.format('csv').option('header', 'true').option('sep', '|').load("service_item.csv")
ratingDF
=
clickDF
.
union
(
expDF
)
# ratingDF = spark.read.format('csv').option('header', 'true').option('sep', '|').load("service_rating.csv")
# ratingDF = ratingDF.withColumn("rating",F.when(col("label")>=1,1).otherwise(0))
ratingDF
=
ratingDF
.
withColumnRenamed
(
"time_stamp"
,
"timestamp"
)
\
ratingDF
=
ratingDF
.
withColumnRenamed
(
"time_stamp"
,
"timestamp"
)
\
.
withColumnRenamed
(
"device_id"
,
"userid"
)
\
.
withColumnRenamed
(
"device_id"
,
"userid"
)
\
...
@@ -717,7 +809,7 @@ if __name__ == '__main__':
...
@@ -717,7 +809,7 @@ if __name__ == '__main__':
# 离散数据字典生成
# 离散数据字典生成
print
(
"数据字典生成..."
)
print
(
"数据字典生成..."
)
dataVocab
=
getDataVocab
(
samplesWithUserFeatures
)
dataVocab
=
getDataVocab
(
samplesWithUserFeatures
,
model_columns
)
timestmp8
=
int
(
round
(
time
.
time
()))
timestmp8
=
int
(
round
(
time
.
time
()))
print
(
"数据字典生成 耗时s:{}"
.
format
(
timestmp8
-
timestmp7
))
print
(
"数据字典生成 耗时s:{}"
.
format
(
timestmp8
-
timestmp7
))
# 字典转为json 存入redis
# 字典转为json 存入redis
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment