Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
5e1859bf
Commit
5e1859bf
authored
Jul 30, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
service model 优化
parent
9dcf2b68
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
42 additions
and
42 deletions
+42
-42
featureEng.py
spark/featureEng.py
+0
-0
featureEng_copy.py
spark/featureEng_copy.py
+0
-0
train_service.py
train/train_service.py
+8
-34
train_service_copy.py
train/train_service_copy.py
+34
-8
No files found.
spark/featureEng.py
View file @
5e1859bf
This diff is collapsed.
Click to expand it.
spark/featureEng
2
.py
→
spark/featureEng
_copy
.py
View file @
5e1859bf
This diff is collapsed.
Click to expand it.
train/train_service.py
View file @
5e1859bf
...
@@ -10,16 +10,6 @@ from datetime import date, timedelta
...
@@ -10,16 +10,6 @@ from datetime import date, timedelta
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.configUtils
as
configUtils
import
utils.configUtils
as
configUtils
ITEM_NUMBER_COLUMNS
=
[
"item_"
+
c
for
c
in
[
"smart_rank2"
]]
embedding_columns
=
[
"itemid"
,
"userid"
]
+
[
"item_"
+
c
for
c
in
[
"doctor_id"
,
"hospital_id"
,
"merchant_id"
]]
multi_columns
=
[
"tags_v3"
,
"first_demands"
,
"second_demands"
,
"first_solutions"
,
"second_solutions"
,
"first_positions"
,
"second_positions"
]
one_hot_columns
=
[
"user_os"
]
+
[
"item_"
+
c
for
c
in
[
"service_type"
,
"doctor_type"
,
"doctor_famous"
,
"hospital_city_tag_id"
,
"hospital_type"
,
"hospital_is_high_quality"
]]
# history_columns = ["userRatedHistory"]
# 数据加载
# data_path_train = "/Users/zhigangzheng/Desktop/work/guoyu/service_sort/train/part-00000-a61205d1-ad4e-4fa7-895d-ad8db41189e6-c000.csv"
# data_path_test = "/Users/zhigangzheng/Desktop/work/guoyu/service_sort/train/part-00000-a61205d1-ad4e-4fa7-895d-ad8db41189e6-c000.csv"
VERSION
=
configUtils
.
SERVICE_VERSION
VERSION
=
configUtils
.
SERVICE_VERSION
trainDay
=
time
.
strftime
(
"
%
Y
%
m
%
d
%
H"
,
time
.
localtime
())
trainDay
=
time
.
strftime
(
"
%
Y
%
m
%
d
%
H"
,
time
.
localtime
())
data_path_train
=
"/data/files/service_feature_{}_train.csv"
.
format
(
VERSION
)
data_path_train
=
"/data/files/service_feature_{}_train.csv"
.
format
(
VERSION
)
...
@@ -84,43 +74,25 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
...
@@ -84,43 +74,25 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
def
getTrainColumns
(
train_columns
,
data_vocab
):
def
getTrainColumns
(
train_columns
,
data_vocab
):
emb_columns
=
[]
emb_columns
=
[]
number_columns
=
[]
number_columns
=
[]
oneHot_columns
=
[]
dataColumns
=
[]
inputs
=
{}
inputs
=
{}
# 离散特征
# 离散特征
for
feature
in
train_columns
:
for
feature
in
train_columns
:
if
data_vocab
.
get
(
feature
):
if
data_vocab
.
get
(
feature
):
if
feature
.
count
(
"__"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
# col = tf.feature_column.indicator_column(cat_col)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
oneHot_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
else
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
emb_columns
.
append
(
col
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
ITEM_NUMBER_COLUMNS
:
elif
feature
.
endswith
(
"_number"
)
:
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
number_columns
.
append
(
col
)
number_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
emb_columns
,
number_columns
,
oneHot_columns
,
dataColumns
,
inputs
return
emb_columns
,
number_columns
,
inputs
def
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_dataset
):
def
train
(
emb_columns
,
number_columns
,
inputs
,
train_dataset
):
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
+
oneHot_columns
)(
inputs
)
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
...
@@ -193,6 +165,7 @@ if __name__ == '__main__':
...
@@ -193,6 +165,7 @@ if __name__ == '__main__':
timestmp1
=
int
(
round
(
time
.
time
()))
timestmp1
=
int
(
round
(
time
.
time
()))
df_train
=
loadData
(
data_path_train
)
df_train
=
loadData
(
data_path_train
)
print
(
df_train
.
dtypes
)
print
(
df_train
.
dtypes
)
print
(
"训练数据列:"
,
df_train
.
columns
)
df_test
=
df_train
.
loc
[
df_train
[
'timestamp'
]
>=
splitTimestamp
]
df_test
=
df_train
.
loc
[
df_train
[
'timestamp'
]
>=
splitTimestamp
]
df_train
=
df_train
.
loc
[
df_train
[
'timestamp'
]
<
splitTimestamp
]
df_train
=
df_train
.
loc
[
df_train
[
'timestamp'
]
<
splitTimestamp
]
...
@@ -204,8 +177,9 @@ if __name__ == '__main__':
...
@@ -204,8 +177,9 @@ if __name__ == '__main__':
columns
=
df_train
.
columns
.
tolist
()
columns
=
df_train
.
columns
.
tolist
()
print
(
"原始数据列:"
)
print
(
"原始数据列:"
)
print
(
columns
)
print
(
columns
)
emb_columns
,
number_columns
,
oneHot_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
emb_columns
,
number_columns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
print
(
"训练列:"
)
print
(
"训练列:"
)
datasColumns
=
list
(
inputs
.
keys
())
print
(
datasColumns
)
print
(
datasColumns
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
...
@@ -226,7 +200,7 @@ if __name__ == '__main__':
...
@@ -226,7 +200,7 @@ if __name__ == '__main__':
print
(
"train start..."
)
print
(
"train start..."
)
timestmp3
=
int
(
round
(
time
.
time
()))
timestmp3
=
int
(
round
(
time
.
time
()))
model
=
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_data
)
model
=
train
(
emb_columns
,
number_columns
,
inputs
,
train_data
)
timestmp4
=
int
(
round
(
time
.
time
()))
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
...
...
train/train_service
2
.py
→
train/train_service
_copy
.py
View file @
5e1859bf
...
@@ -10,6 +10,16 @@ from datetime import date, timedelta
...
@@ -10,6 +10,16 @@ from datetime import date, timedelta
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.configUtils
as
configUtils
import
utils.configUtils
as
configUtils
ITEM_NUMBER_COLUMNS
=
[
"item_"
+
c
for
c
in
[
"smart_rank2"
]]
embedding_columns
=
[
"itemid"
,
"userid"
]
+
[
"item_"
+
c
for
c
in
[
"doctor_id"
,
"hospital_id"
,
"merchant_id"
]]
multi_columns
=
[
"tags_v3"
,
"first_demands"
,
"second_demands"
,
"first_solutions"
,
"second_solutions"
,
"first_positions"
,
"second_positions"
]
one_hot_columns
=
[
"user_os"
]
+
[
"item_"
+
c
for
c
in
[
"service_type"
,
"doctor_type"
,
"doctor_famous"
,
"hospital_city_tag_id"
,
"hospital_type"
,
"hospital_is_high_quality"
]]
# history_columns = ["userRatedHistory"]
# 数据加载
# data_path_train = "/Users/zhigangzheng/Desktop/work/guoyu/service_sort/train/part-00000-a61205d1-ad4e-4fa7-895d-ad8db41189e6-c000.csv"
# data_path_test = "/Users/zhigangzheng/Desktop/work/guoyu/service_sort/train/part-00000-a61205d1-ad4e-4fa7-895d-ad8db41189e6-c000.csv"
VERSION
=
configUtils
.
SERVICE_VERSION
VERSION
=
configUtils
.
SERVICE_VERSION
trainDay
=
time
.
strftime
(
"
%
Y
%
m
%
d
%
H"
,
time
.
localtime
())
trainDay
=
time
.
strftime
(
"
%
Y
%
m
%
d
%
H"
,
time
.
localtime
())
data_path_train
=
"/data/files/service_feature_{}_train.csv"
.
format
(
VERSION
)
data_path_train
=
"/data/files/service_feature_{}_train.csv"
.
format
(
VERSION
)
...
@@ -74,25 +84,43 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
...
@@ -74,25 +84,43 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
def
getTrainColumns
(
train_columns
,
data_vocab
):
def
getTrainColumns
(
train_columns
,
data_vocab
):
emb_columns
=
[]
emb_columns
=
[]
number_columns
=
[]
number_columns
=
[]
oneHot_columns
=
[]
dataColumns
=
[]
inputs
=
{}
inputs
=
{}
# 离散特征
# 离散特征
for
feature
in
train_columns
:
for
feature
in
train_columns
:
if
data_vocab
.
get
(
feature
):
if
data_vocab
.
get
(
feature
):
if
feature
.
count
(
"__"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
# col = tf.feature_column.indicator_column(cat_col)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
oneHot_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
else
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
emb_columns
.
append
(
col
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
.
endswith
(
"_number"
)
:
elif
feature
in
ITEM_NUMBER_COLUMNS
:
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
number_columns
.
append
(
col
)
number_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
emb_columns
,
number_columns
,
inputs
return
emb_columns
,
number_columns
,
oneHot_columns
,
dataColumns
,
inputs
def
train
(
emb_columns
,
number_columns
,
inputs
,
train_dataset
):
def
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_dataset
):
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
)(
inputs
)
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
+
oneHot_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
...
@@ -165,7 +193,6 @@ if __name__ == '__main__':
...
@@ -165,7 +193,6 @@ if __name__ == '__main__':
timestmp1
=
int
(
round
(
time
.
time
()))
timestmp1
=
int
(
round
(
time
.
time
()))
df_train
=
loadData
(
data_path_train
)
df_train
=
loadData
(
data_path_train
)
print
(
df_train
.
dtypes
)
print
(
df_train
.
dtypes
)
print
(
"训练数据列:"
,
df_train
.
columns
)
df_test
=
df_train
.
loc
[
df_train
[
'timestamp'
]
>=
splitTimestamp
]
df_test
=
df_train
.
loc
[
df_train
[
'timestamp'
]
>=
splitTimestamp
]
df_train
=
df_train
.
loc
[
df_train
[
'timestamp'
]
<
splitTimestamp
]
df_train
=
df_train
.
loc
[
df_train
[
'timestamp'
]
<
splitTimestamp
]
...
@@ -177,9 +204,8 @@ if __name__ == '__main__':
...
@@ -177,9 +204,8 @@ if __name__ == '__main__':
columns
=
df_train
.
columns
.
tolist
()
columns
=
df_train
.
columns
.
tolist
()
print
(
"原始数据列:"
)
print
(
"原始数据列:"
)
print
(
columns
)
print
(
columns
)
emb_columns
,
number_columns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
emb_columns
,
number_columns
,
oneHot_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
print
(
"训练列:"
)
print
(
"训练列:"
)
datasColumns
=
list
(
inputs
.
keys
())
print
(
datasColumns
)
print
(
datasColumns
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
...
@@ -200,7 +226,7 @@ if __name__ == '__main__':
...
@@ -200,7 +226,7 @@ if __name__ == '__main__':
print
(
"train start..."
)
print
(
"train start..."
)
timestmp3
=
int
(
round
(
time
.
time
()))
timestmp3
=
int
(
round
(
time
.
time
()))
model
=
train
(
emb_columns
,
number_columns
,
inputs
,
train_data
)
model
=
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_data
)
timestmp4
=
int
(
round
(
time
.
time
()))
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment