Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
5f911d88
Commit
5f911d88
authored
Dec 09, 2021
by
宋柯
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
模型调试
parent
6a2815e9
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
977 additions
and
3 deletions
+977
-3
featureEng.py
spark/featureEng.py
+2
-3
featureEngSk.py
spark/featureEngSk.py
+975
-0
No files found.
spark/featureEng.py
View file @
5f911d88
...
...
@@ -174,6 +174,7 @@ def addItemFeatures(itemDF,dataVocab,multi_col_vocab):
itemDF
=
itemDF
.
drop
(
columns
=
onehot_col
)
for
c
in
multi_col
:
#TODO 这里多标签的应该拆开
multi_col_vocab
[
c
]
=
list
(
set
(
itemDF
[
c
]
.
tolist
()))
for
i
in
range
(
1
,
6
):
...
...
@@ -884,15 +885,13 @@ if __name__ == '__main__':
print
(
"dataVocab:"
)
for
k
,
v
in
dataVocab
.
items
():
print
(
k
,
len
(
v
)
,
v
)
print
(
k
,
len
(
v
))
itemDF_spark
=
spark
.
createDataFrame
(
itemDF
)
itemDF_spark
.
printSchema
()
itemDF_spark
.
show
(
10
,
truncate
=
False
)
sys
.
exit
(
1
)
# item统计特征处理
itemStaticDF
=
addItemStaticFeatures
(
ratingSamplesWithLabel
,
itemDF_spark
,
dataVocab
)
...
...
spark/featureEngSk.py
0 → 100644
View file @
5f911d88
import
sys
import
os
from
datetime
import
date
,
timedelta
from
elasticsearch
import
Elasticsearch
from
elasticsearch.helpers
import
scan
import
time
import
redis
from
pyspark
import
SparkContext
,
SparkConf
from
pyspark.sql
import
SparkSession
import
pyspark.sql
as
sql
from
pyspark.sql.functions
import
when
from
pyspark.sql.types
import
*
from
pyspark.sql
import
functions
as
F
from
collections
import
defaultdict
import
json
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.configUtils
as
configUtils
# import utils.connUtils as connUtils
import
pandas
as
pd
import
math
# os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
"""
特征工程
"""
NUMBER_PRECISION
=
2
VERSION
=
configUtils
.
SERVICE_VERSION
FEATURE_USER_KEY
=
"Strategy:rec:feature:service:"
+
VERSION
+
":user:"
FEATURE_ITEM_KEY
=
"Strategy:rec:feature:service:"
+
VERSION
+
":item:"
FEATURE_VOCAB_KEY
=
"Strategy:rec:vocab:service:"
+
VERSION
FEATURE_COLUMN_KEY
=
"Strategy:rec:column:service:"
+
VERSION
ITEM_PREFIX
=
"item_"
DATA_PATH_TRAIN
=
"/data/files/service_feature_{}_train.csv"
.
format
(
VERSION
)
def
getRedisConn
():
pool
=
redis
.
ConnectionPool
(
host
=
"172.16.50.145"
,
password
=
"XfkMCCdWDIU
%
ls$h"
,
port
=
6379
,
db
=
0
)
conn
=
redis
.
Redis
(
connection_pool
=
pool
)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test
return
conn
def
parseTags
(
tags
,
i
):
tags_arr
=
tags
.
split
(
","
)
if
len
(
tags_arr
)
>=
i
:
return
tags_arr
[
i
-
1
]
else
:
return
"-1"
def
numberToBucket
(
num
):
res
=
0
if
not
num
:
return
str
(
res
)
if
num
>=
1000
:
res
=
1000
//
10
else
:
res
=
int
(
num
)
//
10
return
str
(
res
)
def
priceToBucket
(
num
):
res
=
0
if
not
num
:
return
str
(
res
)
if
num
>=
100000
:
res
=
100000
//
1000
else
:
res
=
int
(
num
)
//
1000
return
str
(
res
)
numberToBucketUdf
=
F
.
udf
(
numberToBucket
,
StringType
())
priceToBucketUdf
=
F
.
udf
(
priceToBucket
,
StringType
())
def
addItemStaticFeatures
(
samples
,
itemDF
,
dataVocab
):
ctrUdf
=
F
.
udf
(
wilson_ctr
,
FloatType
())
# item不设置over窗口,原因:item可能一直存在,统计数据按照最新即可
print
(
"item统计特征处理..."
)
staticFeatures
=
samples
.
groupBy
(
'item_id'
)
.
agg
(
F
.
count
(
F
.
lit
(
1
))
.
alias
(
'itemRatingCount'
),
F
.
avg
(
F
.
col
(
'rating'
))
.
alias
(
'itemRatingAvg'
),
F
.
stddev
(
F
.
col
(
'rating'
))
.
alias
(
'itemRatingStddev'
),
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
alias
(
"itemClickCount"
),
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
0
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
alias
(
"itemExpCount"
)
)
.
fillna
(
0
)
\
.
withColumn
(
'itemRatingStddev'
,
F
.
format_number
(
F
.
col
(
'itemRatingStddev'
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
'itemRatingAvg'
,
F
.
format_number
(
F
.
col
(
'itemRatingAvg'
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
'itemCtr'
,
F
.
format_number
(
ctrUdf
(
F
.
col
(
"itemClickCount"
),(
F
.
col
(
"itemExpCount"
))),
NUMBER_PRECISION
)
.
cast
(
"float"
))
staticFeatures
.
show
(
20
,
truncate
=
False
)
staticFeatures
=
itemDF
.
join
(
staticFeatures
,
on
=
[
"item_id"
],
how
=
'left'
)
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
"itemRatingCount"
,
"itemRatingAvg"
,
"itemClickCount"
,
"itemExpCount"
]:
new_col
=
col
+
bucket_suffix
staticFeatures
=
staticFeatures
.
withColumn
(
new_col
,
numberToBucketUdf
(
F
.
col
(
col
)))
\
.
drop
(
col
)
\
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
new_col
)
.
isNull
(),
"0"
)
.
otherwise
(
F
.
col
(
new_col
)))
dataVocab
[
new_col
]
=
bucket_vocab
# 方差处理
number_suffix
=
"_number"
for
col
in
[
"itemRatingStddev"
]:
new_col
=
col
+
number_suffix
staticFeatures
=
staticFeatures
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
1
/
(
F
.
col
(
col
)
+
1
)))
.
drop
(
col
)
for
col
in
[
"itemCtr"
]:
new_col
=
col
+
number_suffix
staticFeatures
=
staticFeatures
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
F
.
col
(
col
)))
.
withColumnRenamed
(
col
,
new_col
)
print
(
"item size:"
,
staticFeatures
.
count
())
staticFeatures
.
show
(
5
,
truncate
=
False
)
return
staticFeatures
def
addUserStaticsFeatures
(
samples
,
dataVocab
):
print
(
"user统计特征处理..."
)
samples
=
samples
\
.
withColumn
(
'userRatingCount'
,
F
.
format_number
(
F
.
sum
(
F
.
lit
(
1
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingAvg"
,
F
.
format_number
(
F
.
avg
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingStddev"
,
F
.
format_number
(
F
.
stddev
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userClickCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userExpCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
0
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userCtr"
,
F
.
format_number
(
F
.
col
(
"userClickCount"
)
/
(
F
.
col
(
"userExpCount"
)
+
1
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
filter
(
F
.
col
(
"userRatingCount"
)
>
1
)
samples
.
show
(
20
,
truncate
=
False
)
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
"userRatingCount"
,
"userRatingAvg"
,
"userClickCount"
,
"userExpCount"
]:
new_col
=
col
+
bucket_suffix
samples
=
samples
.
withColumn
(
new_col
,
numberToBucketUdf
(
F
.
col
(
col
)))
\
.
drop
(
col
)
\
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
new_col
)
.
isNull
(),
"0"
)
.
otherwise
(
F
.
col
(
new_col
)))
dataVocab
[
new_col
]
=
bucket_vocab
# 方差处理
number_suffix
=
"_number"
for
col
in
[
"userRatingStddev"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
1
/
(
F
.
col
(
col
)
+
1
)))
.
drop
(
col
)
for
col
in
[
"userCtr"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
F
.
col
(
col
)))
.
withColumnRenamed
(
col
,
new_col
)
samples
.
printSchema
()
samples
.
show
(
20
,
truncate
=
False
)
return
samples
def
addItemFeatures
(
itemDF
,
dataVocab
,
multi_col_vocab
):
# multi_col = ['sku_tags', 'sku_show_tags','second_demands', 'second_solutions', 'second_positions']
multi_col
=
[
'tags_v3'
,
'second_demands'
,
'second_solutions'
,
'second_positions'
]
onehot_col
=
[
'id'
,
'service_type'
,
'merchant_id'
,
'doctor_type'
,
'doctor_id'
,
'doctor_famous'
,
'hospital_id'
,
'hospital_city_tag_id'
,
'hospital_type'
,
'hospital_is_high_quality'
]
for
col
in
onehot_col
:
new_c
=
ITEM_PREFIX
+
col
dataVocab
[
new_c
]
=
list
(
set
(
itemDF
[
col
]
.
tolist
()))
itemDF
[
new_c
]
=
itemDF
[
col
]
itemDF
=
itemDF
.
drop
(
columns
=
onehot_col
)
for
c
in
multi_col
:
#TODO 这里多标签的应该拆开
multi_col_vocab
[
c
]
=
list
(
set
(
itemDF
[
c
]
.
tolist
()))
for
i
in
range
(
1
,
6
):
new_c
=
ITEM_PREFIX
+
c
+
"__"
+
str
(
i
)
itemDF
[
new_c
]
=
itemDF
[
c
]
.
map
(
lambda
x
:
parseTags
(
x
,
i
))
dataVocab
[
new_c
]
=
multi_col_vocab
[
c
]
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
'case_count'
,
'sales_count'
]:
new_col
=
ITEM_PREFIX
+
col
+
bucket_suffix
itemDF
[
new_col
]
=
itemDF
[
col
]
.
map
(
numberToBucket
)
itemDF
=
itemDF
.
drop
(
columns
=
[
col
])
dataVocab
[
new_col
]
=
bucket_vocab
for
col
in
[
'sku_price'
]:
new_col
=
ITEM_PREFIX
+
col
+
bucket_suffix
itemDF
[
new_col
]
=
itemDF
[
col
]
.
map
(
priceToBucket
)
itemDF
=
itemDF
.
drop
(
columns
=
[
col
])
dataVocab
[
new_col
]
=
bucket_vocab
# 连续数据处理
number_suffix
=
"_number"
for
col
in
[
"discount"
]:
new_col
=
ITEM_PREFIX
+
col
+
number_suffix
itemDF
[
new_col
]
=
itemDF
[
col
]
itemDF
=
itemDF
.
drop
(
columns
=
[
col
])
return
itemDF
def
extractTags
(
genres_list
):
# 根据点击列表顺序加权
genres_dict
=
defaultdict
(
int
)
for
i
,
genres
in
enumerate
(
genres_list
):
for
genre
in
genres
.
split
(
','
):
genres_dict
[
genre
]
+=
i
sortedGenres
=
sorted
(
genres_dict
.
items
(),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
return
[
x
[
0
]
for
x
in
sortedGenres
]
# sql版本不支持F.reverse
def
arrayReverse
(
arr
):
arr
.
reverse
()
return
arr
"""
p —— 概率,即点击的概率,也就是 CTR
n —— 样本总数,即曝光数
z —— 在正态分布里,均值 + z * 标准差会有一定的置信度。例如 z 取 1.96,就有 95
%
的置信度。
Wilson区间的含义就是,就是指在一定置信度下,真实的 CTR 范围是多少
"""
def
wilson_ctr
(
num_pv
,
num_click
):
num_pv
=
float
(
num_pv
)
num_click
=
float
(
num_click
)
if
num_pv
*
num_click
==
0
or
num_pv
<
num_click
:
return
0.0
z
=
1.96
;
n
=
num_pv
;
p
=
num_click
/
num_pv
;
score
=
(
p
+
z
*
z
/
(
2
*
n
)
-
z
*
math
.
sqrt
((
p
*
(
1.0
-
p
)
+
z
*
z
/
(
4.0
*
n
))
/
n
))
/
(
1.0
+
z
*
z
/
n
);
return
float
(
score
);
def
addUserFeatures
(
samples
,
dataVocab
,
multiVocab
):
dataVocab
[
"userid"
]
=
collectColumnToVocab
(
samples
,
"userid"
)
dataVocab
[
"user_city_id"
]
=
collectColumnToVocab
(
samples
,
"user_city_id"
)
dataVocab
[
"user_os"
]
=
[
"ios"
,
"android"
]
extractTagsUdf
=
F
.
udf
(
extractTags
,
ArrayType
(
StringType
()))
arrayReverseUdf
=
F
.
udf
(
arrayReverse
,
ArrayType
(
StringType
()))
ctrUdf
=
F
.
udf
(
wilson_ctr
,
FloatType
())
print
(
"user历史数据处理..."
)
# user历史记录
samples
=
samples
.
withColumn
(
'userPositiveHistory'
,
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
'item_id'
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)))
samples
=
samples
.
withColumn
(
"userPositiveHistory"
,
arrayReverseUdf
(
F
.
col
(
"userPositiveHistory"
)))
for
i
in
range
(
1
,
11
):
samples
=
samples
.
withColumn
(
"userRatedHistory"
+
str
(
i
),
F
.
when
(
F
.
col
(
"userPositiveHistory"
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
"userPositiveHistory"
)[
i
-
1
])
.
otherwise
(
"-1"
))
dataVocab
[
"userRatedHistory"
+
str
(
i
)]
=
dataVocab
[
"item_id"
]
samples
=
samples
.
drop
(
"userPositiveHistory"
)
# user偏好
print
(
"user 偏好数据"
)
for
c
,
v
in
multiVocab
.
items
():
new_col
=
"user"
+
"__"
+
c
samples
=
samples
.
withColumn
(
new_col
,
extractTagsUdf
(
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
c
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
))))
for
i
in
range
(
1
,
6
):
samples
=
samples
.
withColumn
(
new_col
+
"__"
+
str
(
i
),
F
.
when
(
F
.
col
(
new_col
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
new_col
)[
i
-
1
])
.
otherwise
(
"-1"
))
dataVocab
[
new_col
+
"__"
+
str
(
i
)]
=
v
samples
=
samples
.
drop
(
new_col
)
.
drop
(
c
)
print
(
"user统计特征处理..."
)
samples
=
samples
\
.
withColumn
(
'userRatingCount'
,
F
.
format_number
(
F
.
sum
(
F
.
lit
(
1
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingAvg"
,
F
.
format_number
(
F
.
avg
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingStddev"
,
F
.
format_number
(
F
.
stddev
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userClickCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userExpCount"
,
F
.
format_number
(
F
.
sum
(
when
(
F
.
col
(
'label'
)
==
0
,
F
.
lit
(
1
))
.
otherwise
(
F
.
lit
(
0
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userCtr"
,
F
.
format_number
(
ctrUdf
(
F
.
col
(
"userClickCount"
),
F
.
col
(
"userExpCount"
)),
NUMBER_PRECISION
))
\
.
filter
(
F
.
col
(
"userRatingCount"
)
>
1
)
samples
.
show
(
10
,
truncate
=
False
)
# 连续特征分桶
bucket_vocab
=
[
str
(
i
)
for
i
in
range
(
101
)]
bucket_suffix
=
"_Bucket"
for
col
in
[
"userRatingCount"
,
"userRatingAvg"
,
"userClickCount"
,
"userExpCount"
]:
new_col
=
col
+
bucket_suffix
samples
=
samples
.
withColumn
(
new_col
,
numberToBucketUdf
(
F
.
col
(
col
)))
\
.
drop
(
col
)
\
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
new_col
)
.
isNull
(),
"0"
)
.
otherwise
(
F
.
col
(
new_col
)))
dataVocab
[
new_col
]
=
bucket_vocab
# 方差处理
number_suffix
=
"_number"
for
col
in
[
"userRatingStddev"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
new_col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
1
/
(
F
.
col
(
col
)
+
1
)))
.
drop
(
col
)
for
col
in
[
"userCtr"
]:
new_col
=
col
+
number_suffix
samples
=
samples
.
withColumn
(
col
,
F
.
when
(
F
.
col
(
col
)
.
isNull
(),
0
)
.
otherwise
(
F
.
col
(
col
)))
.
withColumnRenamed
(
col
,
new_col
)
samples
.
printSchema
()
samples
.
show
(
10
,
truncate
=
False
)
return
samples
def
addSampleLabel
(
ratingSamples
):
ratingSamples
=
ratingSamples
.
withColumn
(
'label'
,
when
(
F
.
col
(
'rating'
)
>=
1
,
1
)
.
otherwise
(
0
))
ratingSamples
.
show
(
5
,
truncate
=
False
)
ratingSamples
.
printSchema
()
return
ratingSamples
def
samplesNegAndUnion
(
samplesPos
,
samplesNeg
):
# 正负样本 1:4
pos_count
=
samplesPos
.
count
()
neg_count
=
samplesNeg
.
count
()
print
(
"before filter posSize:{},negSize:{}"
.
format
(
str
(
pos_count
),
str
(
neg_count
)))
samplesNeg
=
samplesNeg
.
sample
(
pos_count
*
4
/
neg_count
)
samples
=
samplesNeg
.
union
(
samplesPos
)
dataSize
=
samples
.
count
()
print
(
"dataSize:{}"
.
format
(
str
(
dataSize
)))
return
samples
def
splitAndSaveTrainingTestSamplesByTimeStamp
(
samples
,
splitTimestamp
,
file_path
):
samples
=
samples
.
withColumn
(
"timestampLong"
,
F
.
col
(
"timestamp"
)
.
cast
(
LongType
()))
# quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05)
# splitTimestamp = quantile[0]
train
=
samples
.
where
(
F
.
col
(
"timestampLong"
)
<=
splitTimestamp
)
.
drop
(
"timestampLong"
)
test
=
samples
.
where
(
F
.
col
(
"timestampLong"
)
>
splitTimestamp
)
.
drop
(
"timestampLong"
)
print
(
"split train size:{},test size:{}"
.
format
(
str
(
train
.
count
()),
str
(
test
.
count
())))
trainingSavePath
=
file_path
+
'_train'
testSavePath
=
file_path
+
'_test'
train
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
trainingSavePath
)
test
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
testSavePath
)
def
collectColumnToVocab
(
samples
,
column
):
datas
=
samples
.
select
(
column
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
for
d
in
datas
:
if
d
[
column
]:
vocabSet
.
add
(
str
(
d
[
column
]))
return
list
(
vocabSet
)
def
collectMutiColumnToVocab
(
samples
,
column
):
datas
=
samples
.
select
(
column
)
.
distinct
()
.
collect
()
tagSet
=
set
()
for
d
in
datas
:
if
d
[
column
]:
for
tag
in
d
[
column
]
.
split
(
","
):
tagSet
.
add
(
tag
)
tagSet
.
add
(
"-1"
)
# 空值默认
return
list
(
tagSet
)
def
dataVocabToRedis
(
dataVocab
):
conn
=
getRedisConn
()
conn
.
set
(
FEATURE_VOCAB_KEY
,
dataVocab
)
conn
.
expire
(
FEATURE_VOCAB_KEY
,
60
*
60
*
24
*
7
)
def
featureColumnsToRedis
(
columns
):
conn
=
getRedisConn
()
conn
.
set
(
FEATURE_COLUMN_KEY
,
json
.
dumps
(
columns
))
conn
.
expire
(
FEATURE_COLUMN_KEY
,
60
*
60
*
24
*
7
)
def
featureToRedis
(
key
,
datas
):
conn
=
getRedisConn
()
for
k
,
v
in
datas
.
items
():
newKey
=
key
+
k
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
def
userFeaturesToRedis
(
samples
,
columns
,
prefix
,
redisKey
):
idCol
=
prefix
+
"id"
timestampCol
=
idCol
+
"_timestamp"
def
toRedis
(
datas
):
conn
=
getRedisConn
()
for
d
in
datas
:
k
=
d
[
idCol
]
v
=
json
.
dumps
(
d
.
asDict
(),
ensure_ascii
=
False
)
newKey
=
redisKey
+
k
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
#根据timestamp获取每个user最新的记录
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
resDatas
=
prefixSamples
.
join
(
samples
,
on
=
[
idCol
],
how
=
'inner'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
resDatas
=
resDatas
.
select
(
*
columns
)
.
distinct
()
resDatas
.
show
(
10
,
truncate
=
False
)
print
(
prefix
,
resDatas
.
count
())
resDatas
.
repartition
(
8
)
.
foreachPartition
(
toRedis
)
def
itemFeaturesToRedis
(
itemStaticDF
,
redisKey
):
idCol
=
"item_id"
def
toRedis
(
datas
):
conn
=
getRedisConn
()
for
d
in
datas
:
k
=
d
[
idCol
]
v
=
json
.
dumps
(
d
.
asDict
(),
ensure_ascii
=
False
)
newKey
=
redisKey
+
k
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
itemStaticDF
.
repartition
(
8
)
.
foreachPartition
(
toRedis
)
"""
数据加载
"""
CONTENT_TYPE
=
"service"
SERVICE_HOSTS
=
[
{
'host'
:
"172.16.52.33"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.19"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.48"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.27"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.34"
,
'port'
:
9200
}
]
ES_INDEX
=
"gm-dbmw-service-read"
ES_INDEX_TEST
=
"gm_test-service-read"
ACTION_REG
=
r"""^\\d+$"""
def
getEsConn_test
():
host_config
=
[{
'host'
:
'172.18.52.14'
,
'port'
:
9200
},
{
'host'
:
'172.18.52.133'
,
'port'
:
9200
},
{
'host'
:
'172.18.52.7'
,
'port'
:
9200
}]
return
Elasticsearch
(
host_config
,
http_auth
=
(
'elastic'
,
'gm_test'
),
timeout
=
3600
)
def
getEsConn
():
return
Elasticsearch
(
SERVICE_HOSTS
,
http_auth
=
(
'elastic'
,
'gengmei!@#'
),
timeout
=
3600
)
def
getClickSql
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.cl_type as os,t1.city_id as user_city_id
FROM
(
select partition_date,city_id,cl_id,business_id as card_id,time_stamp,page_stay,cl_type
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<='{endDay}'
AND page_name='welfare_detail'
-- AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
group by partition_date,city_id,cl_id,business_id,time_stamp,page_stay,cl_type
) AS t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
getExposureSql
(
start
,
end
):
# t1.partition_date, t1.cl_id device_id, t1.card_id, t1.time_stamp, t1.cl_type as os, t1.city_id as user_city_id
sql
=
"""
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp,cl_type as os,t1.city_id as user_city_id
from
( --新首页卡片曝光
SELECT partition_date,city_id,cl_type,cl_id,card_id,max(time_stamp) as time_stamp
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<='{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and is_exposure='1'
--and page_name='home'
--and tab_name='精选'
--and page_name in ('home','search_result_more')
and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品'))
and card_type in ('card','video')
and card_content_type in ('service')
and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill')
group by partition_date,city_id,cl_type,cl_id,card_id,app_session_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
getClickSql2
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay
FROM
(select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date BETWEEN '{}' AND '{}'
AND page_name='welfare_detail'
AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
AND business_id rlike '{}'
) AS t1
JOIN
(select partition_date,active_type,first_channel_source_type,device_id
from online.ml_device_day_active_status
where partition_date BETWEEN '{}' AND '{}'
AND active_type IN ('1', '2', '4')
AND first_channel_source_type not IN ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
AND first_channel_source_type not LIKE 'promotion
\\
_jf
\\
_
%
') as t2
ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
(
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY = regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)dev
on t1.cl_id=dev.device_id
WHERE dev.device_id is null
"""
.
format
(
start
,
end
,
ACTION_REG
,
start
,
end
)
print
(
sql
)
return
sql
def
getExposureSql2
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
FROM
(SELECT partition_date,cl_id,card_id,time_stamp
FROM online.ml_community_precise_exposure_detail
WHERE cl_id IS NOT NULL
AND card_id IS NOT NULL
AND card_id rlike '{}'
AND action='page_precise_exposure'
AND card_content_type = '{}'
AND is_exposure = 1 ) AS t1
LEFT JOIN online.ml_device_day_active_status AS t2 ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
( SELECT DISTINCT device_id
FROM ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
WHERE PARTITION_DAY = regexp_replace(DATE_SUB(CURRENT_DATE,1),'-','')
AND is_abnormal_device = 'true' )dev
ON t1.cl_id=dev.device_id
WHERE dev.device_id IS NULL
AND t2.partition_date BETWEEN '{}' AND '{}'
AND t2.active_type IN ('1',
'2',
'4')
AND t2.first_channel_source_type NOT IN ('yqxiu1',
'yqxiu2',
'yqxiu3',
'yqxiu4',
'yqxiu5',
'mxyc1',
'mxyc2',
'mxyc3' ,
'wanpu',
'jinshan',
'jx',
'maimai',
'zhuoyi',
'huatian',
'suopingjingling',
'mocha',
'mizhe',
'meika',
'lamabang' ,
'js-az1',
'js-az2',
'js-az3',
'js-az4',
'js-az5',
'jfq-az1',
'jfq-az2',
'jfq-az3',
'jfq-az4',
'jfq-az5',
'toufang1' ,
'toufang2',
'toufang3',
'toufang4',
'toufang5',
'toufang6',
'TF-toufang1',
'TF-toufang2',
'TF-toufang3',
'TF-toufang4' ,
'TF-toufang5',
'tf-toufang1',
'tf-toufang2',
'tf-toufang3',
'tf-toufang4',
'tf-toufang5',
'benzhan',
'promotion_aso100' ,
'promotion_qianka',
'promotion_xiaoyu',
'promotion_dianru',
'promotion_malioaso',
'promotion_malioaso-shequ' ,
'promotion_shike',
'promotion_julang_jl03',
'promotion_zuimei')
AND t2.first_channel_source_type NOT LIKE 'promotion
\\
_jf
\\
_
%
'
"""
.
format
(
ACTION_REG
,
CONTENT_TYPE
,
start
,
end
)
print
(
sql
)
return
sql
def
connectDoris
(
spark
,
table
):
return
spark
.
read
\
.
format
(
"jdbc"
)
\
.
option
(
"driver"
,
"com.mysql.jdbc.Driver"
)
\
.
option
(
"url"
,
"jdbc:mysql://172.16.30.136:3306/doris_prod"
)
\
.
option
(
"dbtable"
,
table
)
\
.
option
(
"user"
,
"doris"
)
\
.
option
(
"password"
,
"o5gbA27hXHHm"
)
\
.
load
()
def
get_spark
(
appName
):
sparkConf
=
SparkConf
()
sparkConf
.
set
(
"spark.sql.crossJoin.enabled"
,
True
)
sparkConf
.
set
(
"spark.debug.maxToStringFields"
,
"100"
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
False
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_read"
,
True
)
sparkConf
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
True
)
sparkConf
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
True
)
sparkConf
.
set
(
"spark.serializer"
,
"org.apache.spark.serializer.KryoSerializer"
)
sparkConf
.
set
(
"mapreduce.output.fileoutputformat.compress"
,
False
)
sparkConf
.
set
(
"mapreduce.map.output.compress"
,
False
)
spark
=
(
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
appName
(
appName
)
.
enableHiveSupport
()
.
getOrCreate
())
return
spark
def
init_es_query
():
q
=
{
"_source"
:
{
"includes"
:[]
},
"query"
:
{
"bool"
:
{
"must"
:
[{
"term"
:
{
"is_online"
:
True
}}],
"must_not"
:
[],
"should"
:
[]
}
}
}
return
q
def
parseSource
(
_source
):
id
=
str
(
_source
.
setdefault
(
"id"
,
-
1
))
discount
=
_source
.
setdefault
(
"discount"
,
0
)
case_count
=
_source
.
setdefault
(
"case_count"
,
0
)
sales_count
=
_source
.
setdefault
(
"sales_count"
,
0
)
service_type
=
str
(
_source
.
setdefault
(
"service_type"
,
-
1
))
second_demands
=
','
.
join
(
_source
.
setdefault
(
"second_demands"
,[
"-1"
]))
second_solutions
=
','
.
join
(
_source
.
setdefault
(
"second_solutions"
,[
"-1"
]))
second_positions
=
','
.
join
(
_source
.
setdefault
(
"second_positions"
,[
"-1"
]))
tags_v3
=
','
.
join
(
_source
.
setdefault
(
"tags_v3"
,
[
"-1"
]))
# sku
sku_list
=
_source
.
setdefault
(
"sku_list"
,[])
sku_tags_list
=
[]
sku_show_tags_list
=
[]
sku_price_list
=
[]
for
sku
in
sku_list
:
sku_tags_list
+=
sku
.
setdefault
(
"sku_tags"
,[])
# sku_tags_list += sku.setdefault("sku_tags_id",[])
sku_show_tags_list
.
append
(
sku
.
setdefault
(
"show_project_type_name"
,
""
))
price
=
sku
.
setdefault
(
"price"
,
0.0
)
if
price
>
0
:
sku_price_list
.
append
(
price
)
# sku_tags = ",".join([str(i) for i in sku_tags_list]) if len(sku_tags_list) > 0 else "-1"
# sku_show_tags = ",".join(sku_show_tags_list) if len(sku_show_tags_list) > 0 else "-1"
sku_price
=
min
(
sku_price_list
)
if
len
(
sku_price_list
)
>
0
else
0.0
#merchant_id
merchant_id
=
str
(
_source
.
setdefault
(
"merchant_id"
,
"-1"
))
# doctor_type id famous_doctor
doctor
=
_source
.
setdefault
(
"doctor"
,{})
doctor_type
=
str
(
doctor
.
setdefault
(
"doctor_type"
,
"-1"
))
doctor_id
=
str
(
doctor
.
setdefault
(
"id"
,
"-1"
))
doctor_famous
=
str
(
int
(
doctor
.
setdefault
(
"famous_doctor"
,
False
)))
# hospital id city_tag_id hospital_type is_high_quality
hospital
=
doctor
.
setdefault
(
"hospital"
,
{})
hospital_id
=
str
(
hospital
.
setdefault
(
"id"
,
"-1"
))
hospital_city_tag_id
=
str
(
hospital
.
setdefault
(
"city_tag_id"
,
-
1
))
hospital_type
=
str
(
hospital
.
setdefault
(
"hospital_type"
,
"-1"
))
hospital_is_high_quality
=
str
(
int
(
hospital
.
setdefault
(
"is_high_quality"
,
False
)))
data
=
[
id
,
discount
,
case_count
,
sales_count
,
service_type
,
merchant_id
,
doctor_type
,
doctor_id
,
doctor_famous
,
hospital_id
,
hospital_city_tag_id
,
hospital_type
,
hospital_is_high_quality
,
second_demands
,
second_solutions
,
second_positions
,
tags_v3
,
# sku_show_tags,
sku_price
]
return
data
# es中获取特征
def
get_service_feature_df
():
es_columns
=
[
"id"
,
"discount"
,
"sales_count"
,
"doctor"
,
"case_count"
,
"service_type"
,
"merchant_id"
,
"second_demands"
,
"second_solutions"
,
"second_positions"
,
"sku_list"
,
"tags_v3"
]
query
=
init_es_query
()
query
[
"_source"
][
"includes"
]
=
es_columns
print
(
json
.
dumps
(
query
),
flush
=
True
)
es_cli
=
getEsConn
()
scan_re
=
scan
(
client
=
es_cli
,
index
=
ES_INDEX
,
query
=
query
,
scroll
=
'3m'
)
datas
=
[]
for
res
in
scan_re
:
_source
=
res
[
'_source'
]
data
=
parseSource
(
_source
)
datas
.
append
(
data
)
print
(
"item size:"
,
len
(
datas
))
itemColumns
=
[
'id'
,
'discount'
,
'case_count'
,
'sales_count'
,
'service_type'
,
'merchant_id'
,
'doctor_type'
,
'doctor_id'
,
'doctor_famous'
,
'hospital_id'
,
'hospital_city_tag_id'
,
'hospital_type'
,
'hospital_is_high_quality'
,
'second_demands'
,
'second_solutions'
,
'second_positions'
,
'tags_v3'
,
'sku_price'
]
# 'sku_tags','sku_show_tags','sku_price']
df
=
pd
.
DataFrame
(
datas
,
columns
=
itemColumns
)
return
df
def
addDays
(
n
,
format
=
"
%
Y
%
m
%
d"
):
return
(
date
.
today
()
+
timedelta
(
days
=
n
))
.
strftime
(
format
)
#显示所有列
pd
.
set_option
(
'display.max_columns'
,
None
)
#显示所有行
pd
.
set_option
(
'display.max_rows'
,
None
)
#设置value的显示长度为100,默认为50
pd
.
set_option
(
'max_colwidth'
,
100
)
if
__name__
==
'__main__'
:
start
=
time
.
time
()
#入参
trainDays
=
int
(
sys
.
argv
[
1
])
print
(
'trainDays:{}'
.
format
(
trainDays
),
flush
=
True
)
endDay
=
addDays
(
0
)
startDay
=
addDays
(
-
int
(
trainDays
))
print
(
"train_data start:{} end:{}"
.
format
(
startDay
,
endDay
))
spark
=
get_spark
(
"service_feature_csv_export"
)
spark
.
sparkContext
.
setLogLevel
(
"ERROR"
)
# itemDF = get_service_feature_df()
# print(itemDF.columns)
# print(itemDF.head(100))
# 行为数据
clickSql
=
getClickSql
(
startDay
,
endDay
)
expSql
=
getExposureSql
(
startDay
,
endDay
)
clickDF
=
spark
.
sql
(
clickSql
)
clickDF
.
createOrReplaceTempView
(
"clickDF"
)
clickDF
.
cache
()
clickDF
.
show
(
100
,
False
)
expDF
=
spark
.
sql
(
expSql
)
expDF
.
createOrReplaceTempView
(
"expDF"
)
print
(
"expDF before count: "
,
expDF
.
count
())
# ratingDF = samplesNegAndUnion(clickDF,expDF)
expDF
=
spark
.
sql
(
"""
SELECT t1.partition_date, t1.device_id, t1.card_id, t1.time_stamp, t1.os, t1.user_city_id
FROM expDF t1
LEFT JOIN clickDF t2
ON t1.partition_date = t2.partition_date
AND t1.device_id = t2.device_id
AND t1.card_id = t2.card_id
AND t1.os = t2.os
AND t1.user_city_id = t2.user_city_id
WHERE t2.device_id is NULL
"""
)
print
(
"expDF after count: "
,
expDF
.
count
())
print
(
"click count: "
,
clickDF
.
count
())
print
(
"添加label..."
)
clickDF
=
clickDF
.
withColumn
(
"label"
,
F
.
lit
(
1
))
expDF
=
expDF
.
withColumn
(
"label"
,
F
.
lit
(
0
))
ratingDF
=
clickDF
.
union
(
expDF
)
ratingDF
=
ratingDF
.
withColumnRenamed
(
"time_stamp"
,
"timestamp"
)
\
.
withColumnRenamed
(
"device_id"
,
"userid"
)
\
.
withColumnRenamed
(
"card_id"
,
"item_id"
)
\
.
withColumnRenamed
(
"page_stay"
,
"rating"
)
\
.
withColumnRenamed
(
"os"
,
"user_os"
)
\
.
withColumn
(
"user_city_id"
,
F
.
when
(
F
.
col
(
"user_city_id"
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
"user_city_id"
)))
\
.
withColumn
(
"timestamp"
,
F
.
col
(
"timestamp"
)
.
cast
(
"long"
))
print
(
ratingDF
.
columns
)
print
(
ratingDF
.
show
(
100
,
truncate
=
False
))
sys
.
exit
(
1
)
#TODO 负样本为排除点击的数据
# ratingSamplesWithLabel = addSampleLabel(ratingDF)
df
=
ratingDF
.
toPandas
()
df
=
pd
.
DataFrame
(
df
)
posCount
=
df
.
loc
[
df
[
"label"
]
==
1
][
"label"
]
.
count
()
negCount
=
df
.
loc
[
df
[
"label"
]
==
0
][
"label"
]
.
count
()
print
(
"pos size:"
+
str
(
posCount
),
"neg size:"
+
str
(
negCount
))
itemDF
=
get_service_feature_df
()
print
(
itemDF
.
columns
)
print
(
itemDF
.
head
(
10
))
# itemDF.to_csv("/tmp/service_{}.csv".format(endDay))
# df.to_csv("/tmp/service_train_{}.csv".format(endDay))
# 数据字典
dataVocab
=
{}
multiVocab
=
{}
print
(
"处理item特征..."
)
timestmp1
=
int
(
round
(
time
.
time
()))
itemDF
=
addItemFeatures
(
itemDF
,
dataVocab
,
multiVocab
)
timestmp2
=
int
(
round
(
time
.
time
()))
print
(
"处理item特征, 耗时s:{}"
.
format
(
timestmp2
-
timestmp1
))
print
(
"multiVocab:"
)
for
k
,
v
in
multiVocab
.
items
():
print
(
k
,
len
(
v
))
print
(
"dataVocab:"
)
for
k
,
v
in
dataVocab
.
items
():
print
(
k
,
len
(
v
),
v
)
itemDF_spark
=
spark
.
createDataFrame
(
itemDF
)
itemDF_spark
.
printSchema
()
itemDF_spark
.
show
(
10
,
truncate
=
False
)
sys
.
exit
(
1
)
# item统计特征处理
itemStaticDF
=
addItemStaticFeatures
(
ratingSamplesWithLabel
,
itemDF_spark
,
dataVocab
)
# 统计数据处理
# ratingSamplesWithLabel = addStaticsFeatures(ratingSamplesWithLabel,dataVocab)
samples
=
ratingSamplesWithLabel
.
join
(
itemStaticDF
,
on
=
[
'item_id'
],
how
=
'inner'
)
print
(
"处理user特征..."
)
samplesWithUserFeatures
=
addUserFeatures
(
samples
,
dataVocab
,
multiVocab
)
timestmp3
=
int
(
round
(
time
.
time
()))
print
(
"处理user特征, 耗时s:{}"
.
format
(
timestmp3
-
timestmp2
))
#
# user columns
user_columns
=
[
c
for
c
in
samplesWithUserFeatures
.
columns
if
c
.
startswith
(
"user"
)]
print
(
"collect feature for user:{}"
.
format
(
str
(
user_columns
)))
# item columns
item_columns
=
[
c
for
c
in
itemStaticDF
.
columns
if
c
.
startswith
(
"item"
)]
print
(
"collect feature for item:{}"
.
format
(
str
(
item_columns
)))
# model columns
print
(
"model columns to redis..."
)
model_columns
=
user_columns
+
item_columns
featureColumnsToRedis
(
model_columns
)
print
(
"数据字典save..."
)
print
(
"dataVocab:"
,
str
(
dataVocab
.
keys
()))
vocab_path
=
"../vocab/{}_vocab.json"
.
format
(
VERSION
)
dataVocabStr
=
json
.
dumps
(
dataVocab
,
ensure_ascii
=
False
)
open
(
configUtils
.
VOCAB_PATH
,
mode
=
'w'
,
encoding
=
'utf-8'
)
.
write
(
dataVocabStr
)
# item特征数据存入redis
itemFeaturesToRedis
(
itemStaticDF
,
FEATURE_ITEM_KEY
)
timestmp6
=
int
(
round
(
time
.
time
()))
print
(
"item feature to redis 耗时s:{}"
.
format
(
timestmp6
-
timestmp3
))
"""特征数据存入redis======================================"""
# user特征数据存入redis
userFeaturesToRedis
(
samplesWithUserFeatures
,
user_columns
,
"user"
,
FEATURE_USER_KEY
)
timestmp5
=
int
(
round
(
time
.
time
()))
print
(
"user feature to redis 耗时s:{}"
.
format
(
timestmp5
-
timestmp6
))
"""训练数据保存 ======================================"""
timestmp3
=
int
(
round
(
time
.
time
()))
train_columns
=
model_columns
+
[
"label"
,
"timestamp"
,
"rating"
]
trainSamples
=
samplesWithUserFeatures
.
select
(
*
train_columns
)
train_df
=
trainSamples
.
toPandas
()
train_df
=
pd
.
DataFrame
(
train_df
)
train_df
.
to_csv
(
DATA_PATH_TRAIN
,
sep
=
"|"
)
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"训练数据写入success 耗时s:{}"
.
format
(
timestmp4
-
timestmp3
))
print
(
"总耗时m:{}"
.
format
((
timestmp4
-
start
)
/
60
))
spark
.
stop
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment