Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
66f1efca
Commit
66f1efca
authored
Jul 26, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
service embedding
parent
35f1f8a0
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
66 additions
and
218 deletions
+66
-218
embedding.py
embedding/embedding.py
+58
-201
train_service.py
train/train_service.py
+0
-16
connUtils.py
utils/connUtils.py
+8
-1
No files found.
embedding/embedding.py
View file @
66f1efca
import
os
from
pyspark
import
SparkConf
from
pyspark.sql
import
SparkSession
from
pyspark.sql.functions
import
*
from
pyspark.sql.types
import
*
from
pyspark.ml.feature
import
BucketedRandomProjectionLSH
from
pyspark.mllib.feature
import
Word2Vec
from
pyspark.ml.linalg
import
Vectors
import
random
from
collections
import
defaultdict
import
numpy
as
np
from
pyspark.sql
import
functions
as
F
import
sys
import
time
from
datetime
import
date
,
timedelta
import
pandas
as
pd
from
gensim.models
import
Word2Vec
import
pickle
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.connUtils
as
connUtils
VERSION
=
"v1"
def
getClickSql
(
start
,
end
):
sql
=
"""
...
...
@@ -26,7 +23,7 @@ def getClickSql(start, end):
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<='{endDay}'
AND page_name='welfare_detail'
-- AND page_stay>=1
AND page_stay >= 10
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
...
...
@@ -63,179 +60,28 @@ def getClickSql(start, end):
print
(
sql
)
return
sql
def
addDays
(
n
,
format
=
"
%
Y
%
m
%
d"
):
return
(
date
.
today
()
+
timedelta
(
days
=
n
))
.
strftime
(
format
)
class
UdfFunction
:
@staticmethod
def
sortF
(
movie_list
,
timestamp_list
):
"""
sort by time and return the corresponding movie sequence
eg:
input: movie_list:[1,2,3]
timestamp_list:[1112486027,1212546032,1012486033]
return [3,1,2]
"""
pairs
=
[]
for
m
,
t
in
zip
(
movie_list
,
timestamp_list
):
pairs
.
append
((
m
,
t
))
# sort by time
pairs
=
sorted
(
pairs
,
key
=
lambda
x
:
x
[
1
])
return
[
x
[
0
]
for
x
in
pairs
]
def
processItemSequence
(
spark
,
rawSampleDataPath
):
# rating data
ratingSamples
=
spark
.
read
.
format
(
"csv"
)
.
option
(
"header"
,
"true"
)
.
load
(
rawSampleDataPath
)
# ratingSamples.show(5)
# ratingSamples.printSchema()
sortUdf
=
udf
(
UdfFunction
.
sortF
,
ArrayType
(
StringType
()))
userSeq
=
ratingSamples
\
.
where
(
F
.
col
(
"rating"
)
>=
3.5
)
\
.
groupBy
(
"userId"
)
\
.
agg
(
sortUdf
(
F
.
collect_list
(
"movieId"
),
F
.
collect_list
(
"timestamp"
))
.
alias
(
'movieIds'
))
\
.
withColumn
(
"movieIdStr"
,
array_join
(
F
.
col
(
"movieIds"
),
" "
))
# userSeq.select("userId", "movieIdStr").show(10, truncate = False)
return
userSeq
.
select
(
'movieIdStr'
)
.
rdd
.
map
(
lambda
x
:
x
[
0
]
.
split
(
' '
))
def
embeddingLSH
(
spark
,
movieEmbMap
):
movieEmbSeq
=
[]
for
key
,
embedding_list
in
movieEmbMap
.
items
():
embedding_list
=
[
np
.
float64
(
embedding
)
for
embedding
in
embedding_list
]
movieEmbSeq
.
append
((
key
,
Vectors
.
dense
(
embedding_list
)))
movieEmbDF
=
spark
.
createDataFrame
(
movieEmbSeq
)
.
toDF
(
"movieId"
,
"emb"
)
bucketProjectionLSH
=
BucketedRandomProjectionLSH
(
inputCol
=
"emb"
,
outputCol
=
"bucketId"
,
bucketLength
=
0.1
,
numHashTables
=
3
)
bucketModel
=
bucketProjectionLSH
.
fit
(
movieEmbDF
)
embBucketResult
=
bucketModel
.
transform
(
movieEmbDF
)
print
(
"movieId, emb, bucketId schema:"
)
embBucketResult
.
printSchema
()
print
(
"movieId, emb, bucketId data result:"
)
embBucketResult
.
show
(
10
,
truncate
=
False
)
print
(
"Approximately searching for 5 nearest neighbors of the sample embedding:"
)
sampleEmb
=
Vectors
.
dense
(
0.795
,
0.583
,
1.120
,
0.850
,
0.174
,
-
0.839
,
-
0.0633
,
0.249
,
0.673
,
-
0.237
)
bucketModel
.
approxNearestNeighbors
(
movieEmbDF
,
sampleEmb
,
5
)
.
show
(
truncate
=
False
)
def
trainItem2vec
(
spark
,
samples
,
embLength
,
embOutputPath
,
saveToRedis
,
redisKeyPrefix
):
word2vec
=
Word2Vec
()
.
setVectorSize
(
embLength
)
.
setWindowSize
(
5
)
.
setNumIterations
(
10
)
model
=
word2vec
.
fit
(
samples
)
synonyms
=
model
.
findSynonyms
(
"158"
,
20
)
for
synonym
,
cosineSimilarity
in
synonyms
:
print
(
synonym
,
cosineSimilarity
)
embOutputDir
=
'/'
.
join
(
embOutputPath
.
split
(
'/'
)[:
-
1
])
if
not
os
.
path
.
exists
(
embOutputDir
):
os
.
makedirs
(
embOutputDir
)
with
open
(
embOutputPath
,
'w'
)
as
f
:
for
movie_id
in
model
.
getVectors
():
vectors
=
" "
.
join
([
str
(
emb
)
for
emb
in
model
.
getVectors
()[
movie_id
]])
f
.
write
(
movie_id
+
":"
+
vectors
+
"
\n
"
)
embeddingLSH
(
spark
,
model
.
getVectors
())
return
model
def
generate_pair
(
x
):
# eg:
# watch sequence:['858', '50', '593', '457']
# return:[['858', '50'],['50', '593'],['593', '457']]
pairSeq
=
[]
previousItem
=
''
for
item
in
x
:
if
not
previousItem
:
previousItem
=
item
def
reverseCol
(
x
):
res
=
[]
datas
=
sorted
(
list
(
x
.
time_card
))
last_time_stamp
=
int
(
datas
[
0
]
.
split
(
"_"
)[
0
])
res_line
=
[]
for
d
in
datas
:
time_stamp
=
int
(
d
.
split
(
"_"
)[
0
])
cart_id
=
d
.
split
(
"_"
)[
1
]
if
(
time_stamp
-
last_time_stamp
)
>
60
*
60
:
if
len
(
res_line
)
>
1
:
res
.
append
(
res_line
)
res_line
=
[
cart_id
]
else
:
pairSeq
.
append
((
previousItem
,
item
))
previousItem
=
item
return
pairSeq
def
generateTransitionMatrix
(
samples
):
pairSamples
=
samples
.
flatMap
(
lambda
x
:
generate_pair
(
x
))
pairCountMap
=
pairSamples
.
countByValue
()
pairTotalCount
=
0
transitionCountMatrix
=
defaultdict
(
dict
)
itemCountMap
=
defaultdict
(
int
)
for
key
,
cnt
in
pairCountMap
.
items
():
key1
,
key2
=
key
transitionCountMatrix
[
key1
][
key2
]
=
cnt
itemCountMap
[
key1
]
+=
cnt
pairTotalCount
+=
cnt
transitionMatrix
=
defaultdict
(
dict
)
itemDistribution
=
defaultdict
(
dict
)
for
key1
,
transitionMap
in
transitionCountMatrix
.
items
():
for
key2
,
cnt
in
transitionMap
.
items
():
transitionMatrix
[
key1
][
key2
]
=
transitionCountMatrix
[
key1
][
key2
]
/
itemCountMap
[
key1
]
for
itemid
,
cnt
in
itemCountMap
.
items
():
itemDistribution
[
itemid
]
=
cnt
/
pairTotalCount
return
transitionMatrix
,
itemDistribution
res_line
.
append
(
cart_id
)
last_time_stamp
=
time_stamp
if
len
(
res_line
)
>
1
:
res
.
append
(
res_line
)
def
oneRandomWalk
(
transitionMatrix
,
itemDistribution
,
sampleLength
):
sample
=
[]
# pick the first element
randomDouble
=
random
.
random
()
firstItem
=
""
accumulateProb
=
0.0
for
item
,
prob
in
itemDistribution
.
items
():
accumulateProb
+=
prob
if
accumulateProb
>=
randomDouble
:
firstItem
=
item
break
sample
.
append
(
firstItem
)
curElement
=
firstItem
i
=
1
while
i
<
sampleLength
:
if
(
curElement
not
in
itemDistribution
)
or
(
curElement
not
in
transitionMatrix
):
break
probDistribution
=
transitionMatrix
[
curElement
]
randomDouble
=
random
.
random
()
accumulateProb
=
0.0
for
item
,
prob
in
probDistribution
.
items
():
accumulateProb
+=
prob
if
accumulateProb
>=
randomDouble
:
curElement
=
item
break
sample
.
append
(
curElement
)
i
+=
1
return
sample
def
randomWalk
(
transitionMatrix
,
itemDistribution
,
sampleCount
,
sampleLength
):
samples
=
[]
for
i
in
range
(
sampleCount
):
samples
.
append
(
oneRandomWalk
(
transitionMatrix
,
itemDistribution
,
sampleLength
))
return
samples
def
graphEmb
(
samples
,
spark
,
embLength
,
embOutputFilename
,
saveToRedis
,
redisKeyPrefix
):
transitionMatrix
,
itemDistribution
=
generateTransitionMatrix
(
samples
)
sampleCount
=
20000
sampleLength
=
10
newSamples
=
randomWalk
(
transitionMatrix
,
itemDistribution
,
sampleCount
,
sampleLength
)
rddSamples
=
spark
.
sparkContext
.
parallelize
(
newSamples
)
trainItem2vec
(
spark
,
rddSamples
,
embLength
,
embOutputFilename
,
saveToRedis
,
redisKeyPrefix
)
def
generateUserEmb
(
spark
,
rawSampleDataPath
,
model
,
embLength
,
embOutputPath
,
saveToRedis
,
redisKeyPrefix
):
ratingSamples
=
spark
.
read
.
format
(
"csv"
)
.
option
(
"header"
,
"true"
)
.
load
(
rawSampleDataPath
)
Vectors_list
=
[]
for
key
,
value
in
model
.
getVectors
()
.
items
():
Vectors_list
.
append
((
key
,
list
(
value
)))
fields
=
[
StructField
(
'movieId'
,
StringType
(),
False
),
StructField
(
'emb'
,
ArrayType
(
FloatType
()),
False
)
]
schema
=
StructType
(
fields
)
Vectors_df
=
spark
.
createDataFrame
(
Vectors_list
,
schema
=
schema
)
ratingSamples
=
ratingSamples
.
join
(
Vectors_df
,
on
=
'movieId'
,
how
=
'inner'
)
result
=
ratingSamples
.
select
(
'userId'
,
'emb'
)
.
rdd
.
map
(
lambda
x
:
(
x
[
0
],
x
[
1
]))
\
.
reduceByKey
(
lambda
a
,
b
:
[
a
[
i
]
+
b
[
i
]
for
i
in
range
(
len
(
a
))])
.
collect
()
with
open
(
embOutputPath
,
'w'
)
as
f
:
for
row
in
result
:
vectors
=
" "
.
join
([
str
(
emb
)
for
emb
in
row
[
1
]])
f
.
write
(
row
[
0
]
+
":"
+
vectors
+
"
\n
"
)
def
addDays
(
n
,
format
=
"
%
Y
%
m
%
d"
):
return
(
date
.
today
()
+
timedelta
(
days
=
n
))
.
strftime
(
format
)
return
res
def
get_spark
(
appName
):
sparkConf
=
SparkConf
()
...
...
@@ -260,7 +106,7 @@ if __name__ == '__main__':
start
=
time
.
time
()
# 入参
trainDays
=
int
(
sys
.
argv
[
1
])
spark
=
get_spark
(
"embedding"
)
spark
=
get_spark
(
"
service_
embedding"
)
print
(
'trainDays:{}'
.
format
(
trainDays
),
flush
=
True
)
...
...
@@ -269,27 +115,37 @@ if __name__ == '__main__':
print
(
"train_data start:{} end:{}"
.
format
(
startDay
,
endDay
))
# conf = SparkConf().setAppName('embedding').setMaster('local')
# spark = SparkSession.builder.config(conf=conf).getOrCreate()
# spark.sparkContext.setLogLevel("ERROR")
# 行为数据
clickSql
=
getClickSql
(
startDay
,
endDay
)
clickDF
=
spark
.
sql
(
clickSql
)
df
=
clickDF
.
toPandas
()
pd
.
DataFrame
(
df
)
.
to_csv
(
"/tmp/service_click.csv"
,
index
=
False
)
# # Change to your own filepath
# file_path = 'file:///home/hadoop/SparrowRecSys/src/main/resources'
# rawSampleDataPath = file_path + "/webroot/sampledata/ratings.csv"
# embLength = 10
# samples = processItemSequence(spark, rawSampleDataPath)
# model = trainItem2vec(spark, samples, embLength,
# embOutputPath=file_path[7:] + "/webroot/modeldata2/item2vecEmb.csv", saveToRedis=False,
# redisKeyPrefix="i2vEmb")
# graphEmb(samples, spark, embLength, embOutputFilename=file_path[7:] + "/webroot/modeldata2/itemGraphEmb.csv",
# saveToRedis=True, redisKeyPrefix="graphEmb")
# generateUserEmb(spark, rawSampleDataPath, model, embLength,
# embOutputPath=file_path[7:] + "/webroot/modeldata2/userEmb.csv", saveToRedis=False,
# redisKeyPrefix="uEmb")
df
=
pd
.
DataFrame
(
df
)
# pd.DataFrame(df).to_csv("/tmp/service_click.csv",index=False)
print
(
"count"
,
df
.
count
())
df
[
"time_card"
]
=
df
[
"time_stamp"
]
.
map
(
str
)
+
"_"
+
df
[
"card_id"
]
.
map
(
str
)
new_df
=
df
.
groupby
([
"device_id"
])
.
apply
(
reverseCol
)
.
to_frame
(
"card_seq"
)
.
reset_index
()
df1
=
new_df
.
loc
[
new_df
[
"card_seq"
]
.
map
(
len
)
>
1
]
print
(
"user seq size:"
,
df1
.
count
())
datas
=
df1
[
"card_seq"
]
.
tolist
()
train_datas
=
[]
for
d
in
datas
:
train_datas
.
extend
(
d
)
print
(
"train size:"
,
len
(
train_datas
))
model
=
Word2Vec
(
train_datas
,
sg
=
1
,
vector_size
=
16
,
window
=
5
,
epochs
=
50
)
s
=
pickle
.
dumps
(
model
)
# 模型保存
conn
=
connUtils
.
getRedisConn
()
model_key
=
"strategy:word2vec:{}:{}"
.
format
(
"service"
,
VERSION
)
model_status_key
=
"strategy:word2vec:status:{}:{}"
.
format
(
"service"
,
VERSION
)
conn
.
set
(
model_key
,
s
)
conn
.
expire
(
model_key
,
60
*
60
*
24
*
30
)
# 模型更新状态保存
conn
.
set
(
model_status_key
,
"1"
)
conn
.
expire
(
model_status_key
,
60
*
60
*
24
*
30
)
conn
.
close
()
\ No newline at end of file
train/train_service.py
View file @
66f1efca
...
...
@@ -8,7 +8,6 @@ from datetime import date, timedelta
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.connUtils
as
connUtils
import
utils.configUtils
as
configUtils
ITEM_NUMBER_COLUMNS
=
[
"item_"
+
c
for
c
in
[
"smart_rank2"
]]
...
...
@@ -34,21 +33,6 @@ def is_float(s):
except
ValueError
:
return
False
#数据字典
def
getDataVocabFromRedis
(
version
):
conn
=
connUtils
.
getRedisConn
()
key
=
"Strategy:rec:vocab:service:"
+
version
dataVocabStr
=
conn
.
get
(
key
)
if
dataVocabStr
:
dataVocab
=
json
.
loads
(
str
(
dataVocabStr
,
encoding
=
"utf-8"
),
encoding
=
'utf-8'
)
print
(
"-----data_vocab-----"
)
for
k
,
v
in
dataVocab
.
items
():
print
(
k
,
len
(
v
))
else
:
dataVocab
=
None
return
dataVocab
# 数据类型转换
def
csvTypeConvert
(
columns
,
df
,
data_vocab
):
df
[
"label"
]
=
df
[
"label"
]
.
astype
(
"int"
)
...
...
utils/connUtils.py
View file @
66f1efca
import
redis
def
getRedisConn
():
def
getRedisConn
4
():
pool
=
redis
.
ConnectionPool
(
host
=
"172.16.50.145"
,
password
=
"XfkMCCdWDIU
%
ls$h"
,
port
=
6379
,
db
=
0
)
conn
=
redis
.
Redis
(
connection_pool
=
pool
)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test
return
conn
def
getRedisConn
():
pool
=
redis
.
ConnectionPool
(
host
=
"172.16.40.133"
,
password
=
"ReDis!GmTx*0aN6"
,
port
=
6379
,
db
=
0
)
conn
=
redis
.
Redis
(
connection_pool
=
pool
)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test
return
conn
if
__name__
==
'__main__'
:
# REDIS_URL = 'redis://:@172.18.51.10:6379'
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment