Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
db3c60f5
Commit
db3c60f5
authored
Jul 30, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
service model 优化
parent
f74cd085
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
7 additions
and
25 deletions
+7
-25
featureEng2.py
spark/featureEng2.py
+1
-2
train_service2.py
train/train_service2.py
+6
-23
No files found.
spark/featureEng2.py
View file @
db3c60f5
...
@@ -335,8 +335,7 @@ def itemFeaturesToRedis(samples,itemDF,columns,redisKey):
...
@@ -335,8 +335,7 @@ def itemFeaturesToRedis(samples,itemDF,columns,redisKey):
conn
.
set
(
newKey
,
v
)
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
item_static_columns
=
[
idCol
]
+
[
col
for
col
in
columns
if
col
.
endswith
(
"Bucket"
)
or
col
.
endswith
(
"_number"
)]
item_static_columns
=
[
idCol
]
+
[
"itemRatingCountBucket"
,
"itemRatingAvgBucket"
,
"itemClickCountBucket"
,
"itemExpCountBucket"
,
"itemRatingStddev_number"
,
"itemCtr_number"
]
#根据timestamp获取每个user最新的记录
#根据timestamp获取每个user最新的记录
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
item_static_df
=
samples
.
join
(
prefixSamples
,
on
=
[
idCol
],
how
=
'left'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
item_static_df
=
samples
.
join
(
prefixSamples
,
on
=
[
idCol
],
how
=
'left'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
...
...
train/train_service2.py
View file @
db3c60f5
...
@@ -84,43 +84,25 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
...
@@ -84,43 +84,25 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
def
getTrainColumns
(
train_columns
,
data_vocab
):
def
getTrainColumns
(
train_columns
,
data_vocab
):
emb_columns
=
[]
emb_columns
=
[]
number_columns
=
[]
number_columns
=
[]
oneHot_columns
=
[]
dataColumns
=
[]
inputs
=
{}
inputs
=
{}
# 离散特征
# 离散特征
for
feature
in
train_columns
:
for
feature
in
train_columns
:
if
data_vocab
.
get
(
feature
):
if
data_vocab
.
get
(
feature
):
if
feature
.
count
(
"__"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
# col = tf.feature_column.indicator_column(cat_col)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
oneHot_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
else
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
emb_columns
.
append
(
col
)
emb_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
.
endswith
(
"_number"
):
elif
feature
.
endswith
(
"_number"
):
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
number_columns
.
append
(
col
)
number_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
emb_columns
,
number_columns
,
oneHot_columns
,
dataColumns
,
inputs
return
emb_columns
,
number_columns
,
inputs
def
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_dataset
):
def
train
(
emb_columns
,
number_columns
,
inputs
,
train_dataset
):
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
+
oneHot_columns
)(
inputs
)
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
...
@@ -204,8 +186,9 @@ if __name__ == '__main__':
...
@@ -204,8 +186,9 @@ if __name__ == '__main__':
columns
=
df_train
.
columns
.
tolist
()
columns
=
df_train
.
columns
.
tolist
()
print
(
"原始数据列:"
)
print
(
"原始数据列:"
)
print
(
columns
)
print
(
columns
)
emb_columns
,
number_columns
,
oneHot_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
emb_columns
,
number_columns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
print
(
"训练列:"
)
print
(
"训练列:"
)
datasColumns
=
list
(
inputs
.
keys
())
print
(
datasColumns
)
print
(
datasColumns
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
...
@@ -226,7 +209,7 @@ if __name__ == '__main__':
...
@@ -226,7 +209,7 @@ if __name__ == '__main__':
print
(
"train start..."
)
print
(
"train start..."
)
timestmp3
=
int
(
round
(
time
.
time
()))
timestmp3
=
int
(
round
(
time
.
time
()))
model
=
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_data
)
model
=
train
(
emb_columns
,
number_columns
,
inputs
,
train_data
)
timestmp4
=
int
(
round
(
time
.
time
()))
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment